OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 7 — Jul. 1, 2014
  • pp: 1444–1455

Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation

Harshana G. Dantanarayana, Nabil Abdel-Moneim, Zhuoqi Tang, Lukasz Sojka, Slawomir Sujecki, David Furniss, Angela B. Seddon, Irnis Kubat, Ole Bang, and Trevor M. Benson  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 7, pp. 1444-1455 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1874 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We select a chalcogenide core glass, AsSe, and cladding glass, GeAsSe, for their disparate refractive indices yet sufficient thermal-compatibility for fabricating step index fiber (SIF) for mid-infrared supercontinuum generation (MIR-SCG). The refractive index dispersion of both bulk glasses is measured over the 0.4 µm–33 µm wavelength-range, probing the electronic and vibrational behavior of these glasses. We verify that a two-term Sellmeier model is unique and sufficient to describe the refractive index dispersion over the wavelength range for which the experimentally determined extinction coefficient is insignificant. A SIF composed of the glasses is fabricated and calculated to exhibit an ultra-high numerical aperture >0.97 over the entire wavelength range 0.4-33 µm suggesting that the SIF glass pair is a promising candidate for MIR-SCG. Material dispersion characteristics and the zero dispersion wavelength, both critical design parameters for SIF for MIR-SCG, are derived.

© 2014 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(160.2750) Materials : Glass and other amorphous materials
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Nonlinear Optical Materials

Original Manuscript: April 14, 2014
Revised Manuscript: June 4, 2014
Manuscript Accepted: June 13, 2014
Published: June 27, 2014

Harshana G. Dantanarayana, Nabil Abdel-Moneim, Zhuoqi Tang, Lukasz Sojka, Slawomir Sujecki, David Furniss, Angela B. Seddon, Irnis Kubat, Ole Bang, and Trevor M. Benson, "Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation," Opt. Mater. Express 4, 1444-1455 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids184, 44–50 (1995). [CrossRef]
  2. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett.27(2), 119–121 (2002). [CrossRef] [PubMed]
  3. A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci.2(3), 177–191 (2011). [CrossRef]
  4. A. B. Seddon, “Mid-infrared (IR) – a hot topic, the potential for using mid-IR light for non-invasive, early detection of skin cancers in vivo,” Phys. Status Solidi B250(5), 1020–1027 (2013). [CrossRef]
  5. Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near-and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009). [CrossRef]
  6. Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum in chalcogenides,” Opt. Mater. Express3(8), 1075–1086 (2013). [CrossRef]
  7. W. Yuan, “2–10µm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber,” Laser Phys. Lett.10(9), 095107 (2013). [CrossRef]
  8. I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express22(4), 3959–3967 (2014). [CrossRef] [PubMed]
  9. C. Agger, C. Pedersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers – detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B29(4), 635–645 (2012). [CrossRef]
  10. Amorphous Materials Inc, “AMTIR-2 Information” (consulted July 2013). http://www.amorphousmaterials.com/app/download/6552914504/Amtir-2+Information.pdf .
  11. D. Furniss and A. B. Seddon, “Thermal analysis of inorganic compound glasses and glass-ceramics” in Principles and Applications of Thermal Analysis, Paul Gabbott, ed. (Wiley-Blackwell, 2007), Chap. 10.
  12. G. Jellison and F. Modine, “Parameterization of the optical functions of amorphous materials in the interbandregion,” Appl. Phys. Lett.69(3), 371–373 (1996). [CrossRef]
  13. G. E. Jellison, “Data analysis for spectroscopic ellipsometry,” in Handbook of Ellipsometry, H. G. Tompkins and E. A. Irene, ed. (William Andrew, Inc., 2005), Chap. 3.
  14. A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys.92(5), 2424–2436 (2002). [CrossRef]
  15. A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and their Applications (Springer, 2007).
  16. M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3-As2Se3 glasses,” Solid State Commun.15(5), 855–858 (1974). [CrossRef]
  17. E. Palik, Handbook of optical constants of solids, vol. 3, (Academic Press, 1998).
  18. J. Orava, J. Šik, T. Wagner, and M. Frumar, “Optical properties of As33S 67−x Sex bulk glasses studied by spectroscopic ellipsometry,” J. Appl. Phys.103(8), 083512 (2008). [CrossRef]
  19. H. Dantanarayana, “Application of TLM for optical microresonators,” Ph.D. thesis, Faculty of Engineering, The University of Nottingham,UK, (2012).
  20. H. Dantanarayana, A. Vukovic, P. Sewell, Z. Lian, D. Furniss, A. Seddon, E. Romanova, A. Konyukhov, B. Derkowska, J. Orava, T. Wãgner, and T. Benson, “The optical properties of chalcogenide glasses: From measurement to electromagnetic simulation tools,” in Proceedings of 12th International Conference on Transparent Optical Networks (ICTON) (2010), pp. 1–4. [CrossRef]
  21. G. P. Agrawal, Nonlinear Fiber Optics (5th edition, Academic Press, 2013).
  22. I. Shavrin, S. Novotny, and H. Ludvigsen, “Mode excitation and supercontinuum generation in a few-mode suspended-core fiber,” Opt. Express21(26), 32141–32150 (2013). [CrossRef] [PubMed]
  23. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  24. B. Ung and M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express18(8), 8647–8659 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited