OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 8 — Aug. 1, 2014
  • pp: 1515–1525

Novel polymer functionalization method for exposed-core optical fiber

Roman Kostecki, Heike Ebendorff-Heidepriem, Shahraam Afshar V., Grant McAdam, Claire Davis, and Tanya M. Monro  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 8, pp. 1515-1525 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1278 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a one step functionalization process for optical fiber sensing applications in which a thin film (∼50 nm) polymer doped with sensor molecules is applied to a silica exposed-core fiber. The method removes the need for surface attachment of functional groups, while integrating the polymer, silica and sensor molecule elements to create a distributed sensor capable of detecting an analyte of interest anywhere along the fiber’s length. We also show that the thin film coating serves a protective function, reducing deterioration in the transmission properties of the silica exposed-core fiber, but increasing loss.

© 2014 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(160.2540) Materials : Fluorescent and luminescent materials
(290.5880) Scattering : Scattering, rough surfaces
(300.2530) Spectroscopy : Fluorescence, laser-induced
(310.1860) Thin films : Deposition and fabrication
(280.1545) Remote sensing and sensors : Chemical analysis
(310.2785) Thin films : Guided wave applications
(060.4005) Fiber optics and optical communications : Microstructured fibers
(220.4241) Optical design and fabrication : Nanostructure fabrication
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(310.6628) Thin films : Subwavelength structures, nanostructures
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Fluorescent and Luminescent Materials

Original Manuscript: May 20, 2014
Revised Manuscript: June 26, 2014
Manuscript Accepted: June 28, 2014
Published: July 3, 2014

Roman Kostecki, Heike Ebendorff-Heidepriem, Shahraam Afshar V., Grant McAdam, Claire Davis, and Tanya M. Monro, "Novel polymer functionalization method for exposed-core optical fiber," Opt. Mater. Express 4, 1515-1525 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express2, 1538–1547 (2012). [CrossRef]
  2. T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35, 1188–1189 (1999). [CrossRef]
  3. S. Afshar V., S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express15, 17891–17901 (2007). [CrossRef]
  4. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.80, 4269–4283 (2008). [CrossRef] [PubMed]
  5. T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010). [CrossRef]
  6. C. Lodeiro, J. L. Capelo, J. C. Mejuto, E. Oliveira, H. M. Santos, B. Pedras, and C. Nunez, “Light and colour as analytical detection tools: A journey into the periodic table using polyamines to bio-inspired systems as chemosensors,” Chem. Soc. Rev.39, 2948–2976 (2010). [CrossRef] [PubMed]
  7. S. Heng, M.-C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Adv.3, 8308–8317 (2013). [CrossRef]
  8. H. T. C. Foo, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Towards microstructured optical fibre sensors: surface analysis of silanised lead silicate glass,” J. Mater. Chem. C1, 6782–6789 (2013). [CrossRef]
  9. B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomed. - NBM9, 550–557 (2013). [CrossRef]
  10. A. François, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Comparison of surface functionalization processes for optical fibre biosensing applications,” in “20th International Conference on Optical Fibre Sensors,” vol. 7503 of Proc. SPIE(2009). [CrossRef]
  11. S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir27, 5680–5685 (2011). [CrossRef] [PubMed]
  12. M. Zhu, M. Z. Lerum, and W. Chen, “How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica,” Langmuir28, 416–423 (2012). [CrossRef]
  13. K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1, 74–86 (2010). [CrossRef]
  14. K. Peters, “Polymer optical fiber sensors - a review,” Smart Mater. Struct.20, 013002 (2011). [CrossRef]
  15. S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun.265, 513–520 (2006). [CrossRef]
  16. S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J.1, 286–292 (2009). [CrossRef]
  17. A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun.285, 1825–1833 (2012). [CrossRef]
  18. M. Li and D. A. Nolan, “Optical transmission fiber design evolution,” J. Lightwave Technol.26, 1079–1092 (2008). [CrossRef]
  19. E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011). [CrossRef] [PubMed]
  20. S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber bragg gratings: refractive index sensing,” Opt. Express22, 1480–1489 (2014). [CrossRef] [PubMed]
  21. K. J. Rowland, A. François, P. Hoffmann, and T. M. Monro, “Fluorescent polymer coated capillaries as optofluidic refractometric sensors,” Opt. Express21, 11492–11505 (2013). [CrossRef] [PubMed]
  22. V. V. N. R. Kishore, A. Aziz, K. L. Narasimhan, N. Periasamy, P. S. Meenakshi, and S. Wategaonkar, “On the assignment of the absorption bands in the optical spectrum of Alq3,” Synthetic Met.126, 199–205 (2002). [CrossRef]
  23. G. McAdam, P. J. Newman, I. McKenzie, C. Davis, and B. R. W. Hinton, “Fiber optic sensors for detection of corrosion within aircraft,” Struct. Health Monit.4, 47–56 (2005). [CrossRef]
  24. J. Ščančar and R. Milačič, “Aluminium speciation in environmental samples: a review,” Anal. Bioanal. Chem.386, 999–1012 (2006). [CrossRef] [PubMed]
  25. R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express4, 29–40 (2014). [CrossRef]
  26. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009). [CrossRef] [PubMed]
  27. G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett.42, 517–519 (2006). [CrossRef]
  28. G. Zhai and L. Tong, “Roughness-induced radiation losses in optical micro or nanofibers,” Opt. Express15, 13805–13816 (2007). [CrossRef] [PubMed]
  29. M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express19, 8596–8601 (2011). [CrossRef] [PubMed]
  30. S. C. Warren-Smith, E. Sinchenko, P. R. Stoddart, and T. M. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photon. Technol. Lett.22, 1385–1387 (2010). [CrossRef]
  31. G. S. He, H. Qin, and Q. Zheng, “Rayleigh, Mie, and Tyndall scatterings of polystyrene microspheres in water: Wavelength, size, and angle dependences,” J. Appl. Phys.105, 023110 (2009). [CrossRef]
  32. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express13, 236–244 (2005). [CrossRef] [PubMed]
  33. K. Tajima, J. Zhou, K. Nakajima, and K. Sato, “Ultralow loss and long length photonic crystal fiber,” J. Lightwave Technol.22, 7–10 (2004). [CrossRef]
  34. T. Kaino, M. Fujiki, S. Oikawa, and S. Nara, “Low-loss plastic optical fibers,” Appl. Opt.20, 2886–2888 (1981). [CrossRef] [PubMed]
  35. T. Seydel, A. Madsen, M. Tolan, G. Grübel, and W. Press, “Capillary waves in slow motion,” Phys. Rev. B63, 073409 (2001). [CrossRef]
  36. J. Jäckle and K. Kawasaki, “Intrinsic roughness of glass surfaces,” J. Phys. - Condens. Mat.7, 4351–4358 (1995). [CrossRef]
  37. S. C. Xue, M. C. J. Large, G. W. Barton, R. I. Tanner, L. Poladian, and R. Lwin, “Role of material properties and drawing conditions in the fabrication of microstructured optical fibers,” J. Lightwave Technol.24, 853–860 (2006). [CrossRef]
  38. J. Liu, H. Li, and J.-M. Lin, “Measurements of surface tension of organic solvents using a simple microfabricated chip,” Anal. Chem.79, 371–377 (2007). [CrossRef]
  39. K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2 laser,” Opt. Mater. Express2, 1101–1110 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited