OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 8 — Aug. 1, 2014
  • pp: 1555–1563

Manipulation of the resonance characteristics of random lasers from dye-doped polymer dispersed liquid crystals in capillary tubes

Ja-Hon Lin and Ying-Li Hsiao  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 8, pp. 1555-1563 (2014)
http://dx.doi.org/10.1364/OME.4.001555


View Full Text Article

Enhanced HTML    Acrobat PDF (1439 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The resonance characteristics of random lasers from dye-doped polymer dispersed liquid crystals (DD-PDLCs) within capillary tubes were investigated. After adding a monomer (NOA65) into the liquid crystal mixtures, the emission spectra from the capillary tube revealed multiple emission spikes with narrow emission linewidth due to enhancement of the light scattering. Besides, the number of emission spikes, full width of the half maximum (FWHM), and lasing threshold from the DD-PDLCs were determined by the density and grain size of the polymer clusters within the PDLC mixtures through the alternation of the monomer concentration. Furthermore, the lasing performance of the DD-PDLCs in the capillary tube can be controlled by temperature. At low temperature, more emission spikes at long wavelengths were excited, and the laser revealed a relatively high Q-factor, accompanied with relatively low-threshold pump energy. It is because the increase in the birefringence of the liquid crystal molecules efficiently enhanced multiple recurrent light scattering.

© 2014 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.2050) Lasers and laser optics : Dye lasers
(290.4210) Scattering : Multiple scattering
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Laser Materials

History
Original Manuscript: May 16, 2014
Revised Manuscript: June 24, 2014
Manuscript Accepted: June 28, 2014
Published: July 9, 2014

Citation
Ja-Hon Lin and Ying-Li Hsiao, "Manipulation of the resonance characteristics of random lasers from dye-doped polymer dispersed liquid crystals in capillary tubes," Opt. Mater. Express 4, 1555-1563 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-8-1555


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Wiersma, “The smallest random laser,” Nature406(6792), 132–135 (2000). [CrossRef] [PubMed]
  2. A. Y. Zyuzin, “Transmission fluctuations and spectral rigidity of lasing states in a random amplifying medium,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(6), 5274–5278 (1995). [CrossRef] [PubMed]
  3. S. John and G. Pang, “Theory of lasing in a multiple-scattering medium,” Phys. Rev. A54(4), 3642–3652 (1996). [CrossRef] [PubMed]
  4. X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett.85(1), 70–73 (2000). [CrossRef] [PubMed]
  5. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics6(6), 355–359 (2012). [CrossRef] [PubMed]
  6. R. C. Polson and Z. V. Vardenya, “Random lasing in human tissues,” Appl. Phys. Lett.85(7), 1289–1291 (2004). [CrossRef]
  7. S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett.84(17), 3244–3246 (2004). [CrossRef]
  8. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett.82(11), 2278–2281 (1999). [CrossRef]
  9. H. Fujiwara, R. Niyuki, Y. Ishikawa, N. Koshizaki, T. Tsuji, and S. Keiji, “Low-threshold and quasi-single-mode random laser within a submicrometer-sized ZnO spherical particle film,” Appl. Phys. Lett.102(6), 061110 (2013). [CrossRef]
  10. J. Fallert, R. J. B. Dietz, M. Hauser, F. Stelzl, C. Klingshirn, and H. Kalt, “Random lasing in ZnO nanocrystals,” J. Lumin.129(12), 1685–1688 (2009). [CrossRef]
  11. S. V. Frolov, Z. V. Varderny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B59(8), R5284–R5287 (1999). [CrossRef]
  12. D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” J. Appl. Phys.108(1), 013106 (2010). [CrossRef]
  13. W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express21(7), 8544–8549 (2013). [CrossRef] [PubMed]
  14. D. Zhanga, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures,” Org. Electron.13(11), 2342–2345 (2012). [CrossRef]
  15. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett.23(21), 1707–1709 (1998). [CrossRef] [PubMed]
  16. J. H. Lin, P. Y. Chen, and J. J. Wu, “Mode competition of two band-edge lasing from dye-doped cholesteric liquid crystal laser,” Opt. Express22(8), 9932–9941 (2014). [CrossRef] [PubMed]
  17. L. W. Lin and L. G. Deng, “Low threshold and coherent random lasing from dye-doped cholesteric liquid crystals using oriented cells,” Laser Phys.23, 028501 (2013).
  18. F. Yao, W. Zhou, H. Bian, Y. Zhang, Y. Pei, X. Sun, and Z. Lv, “Polarization and polarization control of random lasers from dye-doped nematic liquid crystals,” Opt. Lett.38(9), 1557–1559 (2013). [CrossRef] [PubMed]
  19. S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye doped nematic liquid crystals,” Appl. Phys. Lett.89(12), 121109 (2006). [CrossRef]
  20. D. S. Wiersma and S. Cavalieri, “Temperature-controlled random laser action in liquid crystal infiltrated systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(5), 056612 (2002). [CrossRef] [PubMed]
  21. Q. Song, S. Xiao, X. Zhou, L. Liu, L. Xu, Y. Wu, and Z. Wang, “Liquid-crystal-based tunable high-Q directional random laser from a planar random microcavity,” Opt. Lett.32(4), 373–375 (2007). [CrossRef] [PubMed]
  22. C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, I. C. Khoo, and T. H. Lin, “Random lasing in blue phase liquid crystals,” Opt. Express20(21), 23978–23984 (2012). [CrossRef] [PubMed]
  23. Q. Song, L. Liu, L. Xu, Y. Wu, and Z. Wang, “Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity,” Opt. Lett.34(3), 298–300 (2009). [CrossRef] [PubMed]
  24. Y. J. Liu, X. W. Suna, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett.89(1), 011111 (2006). [CrossRef]
  25. L. W. Lin and L. G. Deng, “Random lasers in dye-doped polymer-dispersed liquid crystals containing silver nanoparticles,” Physica B407(24), 4826–4830 (2012). [CrossRef]
  26. L. W. Li, L. Wang, and L. G. Deng, “Low threshold random lasing in DDPDLCs, DDPDLC @ ZnO nanoparticles and dye solution @ ZnO nanoparticle capillaries,” Laser Phys. Lett.11(2), 025201 (2014). [CrossRef]
  27. H. Cao, J. Y. Xu, E. W. Seeling, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett.76(21), 2997–2999 (2000). [CrossRef]
  28. C. Vanneste and P. Sebbah, “Localized modes in random arrays of cylinders,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(2), 026612 (2005). [CrossRef] [PubMed]
  29. G. van Soest, M. Tomita, and A. Lagendijk, “Amplifying volume in scattering media,” Opt. Lett.24(5), 306–308 (1999). [CrossRef] [PubMed]
  30. P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B66(14), 144202 (2002). [CrossRef]
  31. H. Fujiwara, Y. Hamabata, and K. Sasaki, “Numerical analysis of resonant and lasing properties at a defect region within a random structure,” Opt. Express17(5), 3970–3977 (2009). [CrossRef] [PubMed]
  32. A. G. Ardakani, S. M. Mahdavi, and A. R. Bahrampour, “Tuning of random lasers by means of external magnetic fields based on the Voigt effect,” Opt. Laser Technol.47, 121–126 (2013). [CrossRef]
  33. A. G. Ardakani, A. R. Bahrampour, S. M. Mahdavi, and M. Hosseini, “Tunability of terahertz random lasers with temperature based on superconducting materials,” J. Appl. Phys.112(4), 043111 (2012). [CrossRef]
  34. S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett.93(26), 263901 (2004). [CrossRef] [PubMed]
  35. C. R. Lee, S. H. Lin, C. H. Guo, S. H. Chang, T. S. Mo, and S. C. Chu, “All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets,” Opt. Express18(3), 2406–2412 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited