OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 8 — Aug. 1, 2014
  • pp: 1641–1656

Dispersion model of two-phonon absorption: application to c-Si

Daniel Franta, David Nečas, Lenka Zajíčková, and Ivan Ohlídal  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 8, pp. 1641-1656 (2014)
http://dx.doi.org/10.1364/OME.4.001641


View Full Text Article

Enhanced HTML    Acrobat PDF (964 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A dispersion model describing two-phonon absorption is developed using several simplifications of the quasiparticle approach. The dielectric response is constructed from absorption bands corresponding to individual additive and subtractive combinations of phonon branches. The model also includes thermal effects, changes of the transition strength with temperature, originating in Bose-Einstein statistics, and the shift of phonon frequencies accompanying thermal expansion. The model is applied to the analysis of experimental data measured in the IR range on crystalline silicon. The modeled spectral dependencies of optical constants are capable of describing all features in the transmittance spectra 70–1000 cm−1 observable at 300 K for float-zone silicon. The phonon frequencies in the points of symmetry are obtained independently in good agreement with ab initio calculations. The model of thermal effects is verified using ellipsometric measurements 300–1000 cm−1 in the temperature range of 300–500 K. The agreement between the modeled and experimental data is good, except for the spectral range 750–850 cm−1, in which a better agreement at temperatures above 300 K would require including the three-phonon absorption. The analysis provides a reliable value of the thermal coefficient describing the phonon frequency shift and proves that changes of structure broadening with temperature are negligible within the temperature range of 300–500 K.

© 2014 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(260.2030) Physical optics : Dispersion
(260.2130) Physical optics : Ellipsometry and polarimetry
(300.1030) Spectroscopy : Absorption

ToC Category:
Semiconductors

History
Original Manuscript: April 24, 2014
Manuscript Accepted: July 9, 2014
Published: July 21, 2014

Citation
Daniel Franta, David Nečas, Lenka Zajíčková, and Ivan Ohlídal, "Dispersion model of two-phonon absorption: application to c-Si," Opt. Mater. Express 4, 1641-1656 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-8-1641


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Rogalski and K. Chrzanowski, “Infrared devices and techniques,” Opto-Electron. Rev.10, 111–136 (2002).
  2. D. J. Mar, J. P. Marsh, C. P. Deen, H. Ling, H. Choo, and D. T. Jaffe, “Micromachined silicon grisms for infrared optics,” Appl. Opt.48, 1016–1029 (2009). [CrossRef] [PubMed]
  3. O. Stenzel, S. Wilbrandt, S. Yulin, N. Kaiser, M. Held, A. Tünnermann, J. Biskupek, and U. Kaiser, “Plasma ion assisted deposition of hafnium dioxide using argon and xenon as process gases,” Opt. Mater. Express1, 278 (2011). [CrossRef]
  4. D. A. Neumayer and E. Cartier, “Materials characterization of ZrO2–SiO2 and HfO2–SiO2 binary oxides deposited by chemical solution deposition,” J. Appl. Phys.90, 1801–1808 (2001). [CrossRef]
  5. M. Modreanu, J. Sancho-Parramon, O. Durand, B. Servet, M. Stchakovsky, C. Eypert, C. Naudin, A. Knowles, F. Bridou, and M.-F. Ravet, “Investigation of thermal annealing effects on microstructural and optical properties of HfO2 thin films,” Appl. Surf. Sci.253, 328–334 (2006). [CrossRef]
  6. F. L. Martínez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering,” J. Phys. D Appl. Phys.40, 5256–5265 (2007). [CrossRef]
  7. L. Zajíčková, D. Franta, D. Nečas, V. Buršíková, M. Muresan, V. Peřina, and C. Cobet, “Dielectric response and structure of amorphous hydrogenated carbon films with nitrogen admixture,” Thin Solid Films519, 4299–4308 (2011). [CrossRef]
  8. J. Czochralski, “Ein neues Verfahren zur Messung des. Kristallisationsgeschwindigkeit der Metalle,” Z. Phys. Chem.92, 219–221 (1918).
  9. D. Franta, D. Nečas, L. Zajíčková, and I. Ohlídal, “Utilization of the sum rule for construction of advanced dispersion model of crystalline silicon containing interstitial oxygen,” Thin Solid Films (2014). [CrossRef]
  10. M. Lax and E. Burstein, “Infrared lattice absorption in ionic and homopolar crystals,” Phys. Rev.97, 39–52 (1955). [CrossRef]
  11. F. A. Johnson, “Lattice absorption bands in silicon,” Proc. Phys. Soc.73, 265 (1959). [CrossRef]
  12. M. Balkanski, “Photon-phonon interactions in solids,” in “Optical properties of solids,”, F. Abelès, ed. (North–Holland, 1972), pp. 529–651.
  13. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, 2001).
  14. B. Pajot and B. Clerjaud, Optical Absorption of Impurities and Defects in Semiconducting Crystals, Springer Series in Solid-State Sciences 169 (Springer–Verlag, 2013). [CrossRef]
  15. D. Franta, D. Nečas, and L. Zajíčková, “Application of Thomas–Reiche–Kuhn sum rule to construction of advanced dispersion models,” Thin Solid Films534, 432–441 (2013). [CrossRef]
  16. D. Franta, D. Nečas, L. Zajíčková, and I. Ohlídal, “Broadening of dielectric response and sum rule conservation,” Thin Solid Films (2014). [CrossRef]
  17. S. Wei and M. Y. Chou, “Phonon dispersions of silicon and germanium from first-principles calculations,” Phys. Rev. B50, 2221–2226 (1994). [CrossRef]
  18. L. Van Hove, “The occurence of singularities in the elastic frequency distribution of a crystal,” Phys. Rev.89, 1189–1193 (1953). [CrossRef]
  19. C. C. Kim, J. W. Garland, H. Abad, and P. M. Raccah, “Modeling the optical dielectric function of semiconductors: extension of the critical-poit parabolic-band approximation,” Phys. Rev. B45, 11749–11767 (1992). [CrossRef]
  20. M. Abramowitz and I. A. Stegun, eds., Handbook of mathematical functions with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards, 1964).
  21. M. E. Thomas, S. K. Andersson, R. M. Sova, and R. I. Joseph, “Frequency and temperature dependence of the refractive index of sapphire,” Infrared Phys. Technol.39, 235–249 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited