OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 8 — Aug. 1, 2014
  • pp: 1657–1667

Enhanced electro-optical properties of vertically aligned in-plane-switching liquid crystal displays employing polymer networks

Guan-Jhong Lin, Tien-Jung Chen, Bo-Yu Chen, Jin-Jei Wu, and Ying-Jay Yang  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 8, pp. 1657-1667 (2014)
http://dx.doi.org/10.1364/OME.4.001657


View Full Text Article

Enhanced HTML    Acrobat PDF (2184 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The electro-optical properties of vertically aligned in-plane switching (VA-IPS) liquid crystal (LC) cells are transformed by polymer networks. Three kinds of monomer materials are separately mixed with nematic E7 LC. The threshold voltage behavior reveals the strongest anchoring effect from the cross-linking TA-9164 polymer cell, which sustains good light transmittance at higher voltages and significantly improves the display responses. Without overdrive, the rising-time response of the TA-9164 polymer cell is comparable to that of the pure cell under overdrive. This paper demonstrates that a suitable monomer material applied to VA-IPS LC cells can boost their electro-optical performance.

© 2014 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Liquid Crystals

History
Original Manuscript: May 22, 2014
Revised Manuscript: July 14, 2014
Manuscript Accepted: July 16, 2014
Published: July 21, 2014

Citation
Guan-Jhong Lin, Tien-Jung Chen, Bo-Yu Chen, Jin-Jei Wu, and Ying-Jay Yang, "Enhanced electro-optical properties of vertically aligned in-plane-switching liquid crystal displays employing polymer networks," Opt. Mater. Express 4, 1657-1667 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-8-1657


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Lee, D. N. Liu, and S. T. Wu, Introduction to Flat Panel Displays (Wiley, 2008).
  2. S. M. Jung, J. U. Park, S. C. Lee, W. S. Kim, M. S. Yang, I. B. Kang, and I. J. Chung, “A novel polarizer glasses-type 3D displays with an active retarder,” SID Symp. Dig. Tech. Pap. 40(1), 348–351 (2009).
  3. H. K. Shin, J. H. Lee, J. W. Kim, T. H. Yoon, and J. C. Kim, “Fast polarization switching panel with high brightness and contrast ratio for three-dimensional display,” Appl. Phys. Lett.98(6), 063505 (2011). [CrossRef] [PubMed]
  4. M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett.69(5), 623–625 (1996). [CrossRef]
  5. J. I. Baek, K. H. Kim, J. C. Kim, T. H. Yoon, H. S. Woo, S. T. Shin, and J. H. Souk, “Fast switching of vertical alignment liquid crystal cells with liquid crystalline polymer networks,” Jpn. J. Appl. Phys.48(55R), 056507 (2009). [CrossRef]
  6. C. Y. Xiang, X. W. Sun, and X. J. Yin, “The electro-optic properties of a vertically aligned fast response liquid crystal display with three-electrode driving,” J. Phys. D Appl. Phys.37(7), 994–997 (2004). [CrossRef]
  7. C. Y. Xiang, J. X. Guo, X. W. Sun, X. J. Yin, and G. J. Qi, “A fast response, three-electrode liquid crystal device,” Jpn. J. Appl. Phys.42(7), 763–765 (2003). [CrossRef]
  8. H. K. Shin, K. H. Kim, T. H. Yoon, and J. C. Kim, “Vertical alignment nematic liquid crystal cell controlled by double-side in-plane switching with positive dielectric anisotropy liquid crystal,” J. Appl. Phys.104(8), 084515 (2008). [CrossRef]
  9. J. L. West, G. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett.86(3), 031111 (2005). [CrossRef]
  10. J. S. Gwag, J. C. Kim, and T. H. Yoon, “Electrically tilted liquid crystal display mode for high speed operation,” Jpn. J. Appl. Phys.45(9A), 7047–7049 (2006). [CrossRef]
  11. M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett.67(26), 3895–3897 (1995). [CrossRef]
  12. Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp.14(11), 1031–1037 (2006). [CrossRef]
  13. R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst.33(7), 829–832 (2006). [CrossRef]
  14. Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp.18(2), 134–140 (2010). [CrossRef]
  15. H. K. Hong and H. H. Shin, “Effects of rubbing angle on maximum transmittance of in‐plane switching liquid crystal display,” Liq. Cryst.35(2), 173–177 (2008). [CrossRef]
  16. X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys.101(10), 103110 (2007). [CrossRef]
  17. C. Y. Huang, W. Y. Jhuang, and C. T. Hsieh, “Switching of polymer-stabilized vertical alignment liquid crystal cell,” Opt. Express16(6), 3859–3864 (2008). [CrossRef] [PubMed]
  18. J. K. Song, K. E. Lee, H. S. Chang, S. M. Hong, M. B. Jun, B. Y. Park, S. S. Seomun, K. H. Kim, and S. S. Kim, “Novel method for fast response time in PVA mode,” SID Symp. Dig. Tech. Pap. 35(1), 1344–1347 (2004).
  19. S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett.71(19), 2851–2853 (1997). [CrossRef]
  20. G. Yang and Y. Sun, “Fast-response vertical alignment liquid crystal display driven by in-plane switching,” Liq. Cryst.38(4), 507–510 (2011). [CrossRef]
  21. G. Yang and Y. Sun, “A high-transmittance vertical alignment liquid crystal display using a fringe and in-plane electrical field,” Liq. Cryst.38(4), 469–473 (2011). [CrossRef]
  22. K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, “A new MVA-LCD by polymer sustained alignment technology,” SID Symp. Dig. Tech. Pap. 35(1), 1200–1203 (2004). [CrossRef]
  23. S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett.90(26), 261910 (2007). [CrossRef]
  24. S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys.48(3), 032405 (2009). [CrossRef]
  25. S. H. Lee, S. M. Kim, and S. T. Wu, “Review paper: Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp.17(7), 551–559 (2009). [CrossRef]
  26. J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys.44(32), 325104 (2011). [CrossRef]
  27. S. H. Kim and L. C. Chien, “Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils,” Jpn. J. Appl. Phys.43(11A), 7643–7647 (2004). [CrossRef]
  28. Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express22(9), 10634–10641 (2014). [CrossRef] [PubMed]
  29. S. H. Lim, D. H. Kim, S. J. Shin, W. C. Woo, H. S. Jin, S. H. Lee, E. Y. Kim, and S. E. Lee, “Polymer stabilized in-plane field driven vertical alignment liquid crystal device,” SID Symp. Dig. Tech. Pap. 42(1), 1645–1647 (2011). [CrossRef]
  30. S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst.41(4), 552–557 (2014). [CrossRef]
  31. Y. Kim, J. Francl, B. Taheri, and J. L. West, “A method for the formation of polymer walls in liquid crystal/polymer mixtures,” Appl. Phys. Lett.72(18), 2253–2255 (1998). [CrossRef]
  32. Y. Kim, J. Francl, B. Taheri, and J. L. West, “A novel method for the formation of polymer walls in liquid crystal/polymer displays,” SID Symp. Dig. Tech. Pap. 29(1), 397–400 (1998). [CrossRef]
  33. J. B. Nephew, T. C. Nihei, and S. A. Carter, “Reaction-induced phase separation dynamics: a polymer in a liquid crystal solvent,” Phys. Rev. Lett.80(15), 3276–3279 (1998). [CrossRef]
  34. R. Benmouna and B. Benyoucef, “Thermophysical and thermomechanical properties of norland optical adhesives and liquid crystal composites,” J. Appl. Polym. Sci.108(6), 4072–4079 (2008). [CrossRef]
  35. Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett.84(8), 1233–1235 (2004). [CrossRef]
  36. J. Li, G. Baird, Y. H. Lin, H. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp.13(12), 1017–1026 (2005). [CrossRef]
  37. J. W. Goodman, Introduction to Fourier Optics (Roberts & Co., 2005), Chap. 4.
  38. Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp.14(11), 1031–1037 (2006). [CrossRef]
  39. A. D. Garbo and M. Nobili, “Order parameter dependence of the nematic liquid crystal anchoring energy: A numerical approach,” Liq. Cryst.19(2), 269–276 (1995). [CrossRef]
  40. F. Akkurt, N. Kaya, and A. Alicilar, “Phase transitions, order parameters and threshold voltages in liquid crystal systems doped with disperse orange dye and carbon nanoparticles,” Fuller. Nanotube. Car. N.17(6), 616–624 (2009). [CrossRef]
  41. A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(6), 061707 (2005). [CrossRef] [PubMed]
  42. W. Maier and A. Saupe, “A simple molecular statistical theory of the nematic crystalline-liquid phase, Part I,” Z. Naturforsh. Teil.14(a), 882–889 (1959).
  43. W. Maier and A. Saupe, “A simple molecular statistical theory for nematic crystalline-liquid phase, PartII,” Z. Naturforsh. Teil15(a), 287–292 (1960).
  44. W. Maier and G. Meier, “A simple theory of the dielectric characteristics of homogeneous oriented crystalline-liquid phases of the nematic type,” Z. Naturforsch. Teil.16, 262–267 (1961).
  45. H. Wang, T. X. Wu, X. Zhu, and S.-T. Wu, “Correlations between liquid crystal director reorientation and optical response time of a homeotropic cell,” J. Appl. Phys.95(10), 5502–5508 (2004). [CrossRef]
  46. I. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993).
  47. L. Rao, S. Gauza, and S. T. Wu, “Low temperature effects on the response time of liquid crystal displays,” Appl. Phys. Lett.94(7), 071112 (2009). [CrossRef]
  48. X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys.101(10), 103110 (2007). [CrossRef]
  49. M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst.33(1), 67–73 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited