OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 8 — Aug. 1, 2014
  • pp: 1683–1695

X-ray irradiation effects on fluorine-doped germanosilicate optical fibers

D. Di Francesca, A. Boukenter, S. Agnello, S. Girard, A. Alessi, P. Paillet, C. Marcandella, N. Richard, F.M. Gelardi, and Y. Ouerdane  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 8, pp. 1683-1695 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1599 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report an experimental investigation on the effects of fluorine codoping on the radiation response of Ge-doped Optical Fibers (OFs) obtained by three different drawing conditions. The OFs were irradiated with 10 keV X-rays up to 300 Mrad and studied by online Radiation-Induced-Attenuation (RIA) measurements. Confocal Micro-Luminescence (CML) and Electron Paramagnetic Resonance (EPR) were also employed to investigate the permanent radiation-induced-defects. The variation of the Germanium-Lone-Pair-Center (GLPC) and Non-Bridging-Oxygen-Hole-Centers (NBOHC) concentration with the radiation dose is investigated by CML, whereas the ones of the induced Ge(1), Ge(2) and Eʹ centers by EPR. No relevant differences are found in the RIA of the three fibers, as well as in the induced concentrations of Ge(1) and Ge(2) and in the decrease of the GLPC, showing minor relevance of changing the drawing conditions. We found that fluorine codoping does not affect the RIA and that, unexpectedly, the fluorine co-doped zones of the OFs show an enhanced photoluminescence of the radiation induced NBOHC enabling to suggest the presence of both Si and Ge variants. Moreover, an overall increase of the radiation induced Eʹ(Ge) centers is registered in relation to the presence of fluorine showing that this codopant has relevant effects.

© 2014 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2310) Fiber optics and optical communications : Fiber optics
(160.2750) Materials : Glass and other amorphous materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Fiber Materials

Original Manuscript: June 2, 2014
Revised Manuscript: July 13, 2014
Manuscript Accepted: July 13, 2014
Published: July 22, 2014

D. Di Francesca, A. Boukenter, S. Agnello, S. Girard, A. Alessi, P. Paillet, C. Marcandella, N. Richard, F.M. Gelardi, and Y. Ouerdane, "X-ray irradiation effects on fluorine-doped germanosilicate optical fibers," Opt. Mater. Express 4, 1683-1695 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Pacchioni, L. Skuja, and D. L. Griscom, Defects in SiO2 and Related Dielectrics: Science and Technology (Kluwer Academic Publishers, 2000).
  2. S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci.60(3), 2015–2036 (2013). [CrossRef]
  3. S. Girard, J. Keurinck, A. Boukenter, J.-P. Meunier, Y. Ouerdane, B. Azais, P. Charre, and M. Vie, “Gamma-rays and pulsed X-ray radiation responses of nitrogen-, germanium-doped and pure silica core optical fibers,” Nucl. Instr. and Meth. B215(1–2), 187–195 (2004). [CrossRef]
  4. A. Vedda, N. Chiodini, D. Di Martino, M. Fasoli, S. Keffer, A. Lauria, M. Martini, F. Moretti, G. Spinolo, M. Nikl, N. Solovieva, and G. Brambilla, “Ce3+-doped fibers for remote radiation dosimetry,” Appl. Phys. Lett.85(26), 6356–6538 (2004).
  5. W. Primak, “Fast-neutron-induced changes in quartz and vitreous silica,” Phys. Rev. B110(6), 1240–1254 (1958). [CrossRef]
  6. V. B. Neustruev, “Colour centres in germanosilicate glass and optical fibres,” J. Phys. Condens. Matter6(35), 6901–6936 (1994). [CrossRef]
  7. D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys.54(7), 3743–3762 (1983). [CrossRef]
  8. A. Alessi, S. Girard, M. Cannas, S. Agnello, A. Boukenter, and Y. Ouerdane, “Influence of drawing conditions on the properties and radiation sensitivities of pure-silica-core optical fibers,” J. Lightwave Technol.30(11), 1726–1732 (2012). [CrossRef]
  9. L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, “Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2,” Phys. Rev. B84(20), 205206 (2011). [CrossRef]
  10. D. L. Griscom, “γ-Ray-induced visible/infrared optical absorption bands in pure and F-doped silica-core fibers: are they due to self-trapped holes?” J. Non-Cryst. Solids349(1–3), 139–147 (2004). [CrossRef]
  11. D. Ehrt, P. Ebeling, and U. Natura, “UV Transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses,” J. Non-Cryst. Solids263-264(1–4), 240–250 (2000). [CrossRef]
  12. S. Girard, C. Marcandella, A. Morana, J. Perisse, D. Di Francesca, P. Paillet, J.-R. Mace, A. Boukenter, M. Leon, M. Gaillardin, N. Richard, M. Raine, S. Agnello, M. Cannas, and Y. Ouerdane, “Combined high dose and temperature radiation effects on multimode silica-based optical fibers,” IEEE Trans. Nucl. Sci.60(6), 4305–4313 (2013). [CrossRef]
  13. S. Girard, Y. Ouerdane, G. Origlio, C. Marcandella, A. Boukenter, N. Richard, J. Baggio, P. Paillet, M. Cannas, J. Bisutti, J. Meunier, and R. Boscaino, “Radiation effects on silica-based preforms and optical fibers—i: experimental study with canonical samples,” IEEE Trans. Nucl. Sci.55(6), 3473–3482 (2008). [CrossRef]
  14. S. Girard, N. Richard, Y. Ouerdane, G. Origlio, A. Boukenter, L. Martin-Samos, P. Paillet, J.-P. Meunier, J. Baggio, M. Cannas, and R. Boscaino, “Radiation effects on silica-based preforms and optical fibers-ii: coupling ab initio simulations and experiments,” IEEE Trans. Nucl. Sci.55(6), 3508–3514 (2008). [CrossRef]
  15. N. Richard, S. Girard, L. Martin-Samos, L. Giacomazzi, D. Di Francesca, C. Marcandella, A. Alessi, P. Paillet, S. Agnello, A. Boukenter, Y. Ouerdane, M. Cannas, and R. Boscaino, “Coupled theoretical and experimental studies for the radiation hardening of silica-based optical fibers,” IEEE Trans. Nucl. Sci. (to be published).
  16. S. Girard, C. Marcandella, A. Alessi, A. Boukenter, Y. Ouerdane, N. Richard, P. Paillet, M. Gaillardin, and M. Raine, “Transient radiation responses of optical fibers: influence of MCVD process parameters,” IEEE Trans. Nucl. Sci.59(6), 2894–2901 (2012). [CrossRef]
  17. S. Girard, J. Keurinck, Y. Ouerdane, J. Meunier, and A. Boukenter, “γ-Rays and pulsed X-ray radiation responses of germanosilicate single-mode optical fibers: influence of cladding codopants,” J. Lightwave Technol.22(8), 1915–1922 (2004). [CrossRef]
  18. E. J. Friebele, “Correlation of single mode fiber fabrication factors and radiation response,” Naval Research Lab., Washington, DC, NRL/MR/6505–92–6939, Feb. 28, (1992).
  19. A. A. Abramov, M. M. Bubnov, E. M. Dianov, L. A. Kol’Chenko, S. L. Semjonov, A. G. Shchebunjaev, A. N. Gurjanov, and V. F. Khopin, “Influence of fluorine doping on drawing induced fibre losses,” Electron. Lett.29(22), 1977–1978 (1993). [CrossRef]
  20. A. Alessi, S. Girard, C. Marcandella, S. Agnello, M. Cannas, A. Boukenter, and Y. Ouerdane, “X-ray irradiation effects on a multistep Ge-doped silica fiber produced using different drawing conditions,” J. Non-Cryst. Solids357(8–9), 1966–1970 (2011). [CrossRef]
  21. S. Agnello, R. Boscaino, M. Cannas, and F. M. Gelardi, “Instantaneous diffusion effect on spin-echo decay: Experimental investigation by spectral selective excitation,” Phys. Rev. B64(17), 174423 (2001). [CrossRef]
  22. D. Griscom, “Fractal kinetics of radiation-induced point-defect formation and decay in amorphous insulators: Application to color centers in silica-based optical fibers,” Phys. Rev. B64, 174201 (2001).
  23. V. A. Radtsig, “Reactive intermediates on the surface of solids (Si02 and Ge02): A review of studies and prospects for their development,” Chem. Phys. Reports14, 1206–1245 (1995).
  24. D. Griscom, “Trapped-electron centers in pure and doped glassy silica: A review and synthesis,” J. Non-Cryst. Solids357(8-9), 1945–1962 (2011). [CrossRef]
  25. L. N. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids149(1–2), 77–95 (1992). [CrossRef]
  26. K. Awazu, H. Kawazoe, and M. Yamane, “Simultaneous generation of optical absorption bands 5.14 and0.452 eV in 9 SiO2:GeO2 glasses heated under H2 atmosphere,” J. Appl. Phys.68(6), 2713–2718 (1990). [CrossRef]
  27. L. Skuja, “The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2,” J. Non-Cryst. Solids179(1), 5–69 (1994).
  28. L. Skuja and A. Naber, “Site-selective luminescence study of defects in gamma-irradiated glassy germanium dioxide,” Nucl. Instrum. Methods Phys. Res. B116(1–4), 549–553 (1996). [CrossRef]
  29. A. Alessi, S. Agnello, F. M. Gelardi, G. Messina, and M. Carpanese, “Influence of Ge doping level on the EPR signal of Ge(1), Ge(2) and EʹGe defects in Ge-doped silica,” J. Non-Cryst. Solids357(8–9), 1900–1903 (2011). [CrossRef]
  30. M. Takahashi, H. Shigemura, Y. Kawamoto, J. Nishii, and T. Yoko, “Photochemical reactions of Ge-related defects in 10GeO2 · 90SiO2 glass prepared by sol-gel process,” J. Non-Cryst. Solids259(1-3), 149–155 (1999). [CrossRef]
  31. M. Fujimaki, T. Kasahara, S. Shimoto, N. Miyazaki, S. Tokuhiro, K. S. Seol, and Y. Ohki, “Structural changes induced by KrFexcimer laser photons in H2-loaded Ge-doped SiO2 glass,” Phys. Rev. B60(7), 4682–4687 (1999). [CrossRef]
  32. D. L. Griscom, “On the natures of radiation-induced point defects in GeO2-SiO2 glasses: reevaluation of a 26-year-old ESR and optical data set,” Opt. Mater. Express1(3), 400–412 (2011). [CrossRef]
  33. T. Wei, M. P. Singh, W. J. Miniscalco, P. I. K. Onorato, and J. A. Wall, “Effect of fluorine doping on radiation hardness of graded index optical fibers,” Proc. SPIE0842, 169–173 (1987). [CrossRef]
  34. D. L. Griscom and M. Mizuguchi, “Determination of the visible range optical absorption spectrumof peroxy radicals in gamma-irradiated fused silica,” J. Non-Cryst. Solids239(1–3), 66–77 (1998). [CrossRef]
  35. J. Nishii, K. Fukumi, H. Yamanaka, K. Kawamura, H. Hosono, and H. Kawazoe, “Photochemical reactions in GeO2-SiO2 glasses induced by ultraviolet irradiation: comparison between Hg lamp and excimer laser,” Phys. Rev. B Condens. Matter52(3), 1661–1665 (1995). [CrossRef] [PubMed]
  36. A. Alessi, S. Girard, M. Cannas, S. Agnello, A. Boukenter, and Y. Ouerdane, “Evolution of photo-induced defects in Ge-doped fiber/preform: influence of the drawing,” Opt. Express19(12), 11680–11690 (2011). [CrossRef] [PubMed]
  37. M. Essid, J. Albert, J. L. Brebner, and K. Awazu, “Correlation between oxygen-deficient center concentration and KrFexcimer laser induced defects in thermally annealed Ge-doped optical fiber preforms,” J. Non-Cryst. Solids246(1), 39–45 (1999). [CrossRef]
  38. J. Nishii, N. Kitamura, H. Yamanaka, H. Hosono, and H. Kawazoe, “Ultraviolet-radiation-induced chemical reactions through one and two-photon absorption processes in GeO2-SiO2 glasses,” Opt. Lett.20(10), 1184–1186 (1995). [CrossRef] [PubMed]
  39. M. Takahashi, T. Uchino, and T. Yoko, “Correlation between macro- and microstructural changes in ge:sio2 and sio2 glasses under intense ultraviolet irradiation,” J. Am. Ceram. Soc.85(5), 1089–1092 (2002). [CrossRef]
  40. H. Imai and H. Hirashima, “Intrinsic- and extrinsict- defect formation in silica glasses by irradiation,” J. Non-Cryst. Solids94, 179–202 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited