OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 8 — Aug. 1, 2014
  • pp: 1708–1716

Microstructured waveguides in z-cut LiNbO3 by high-repetition rate direct femtosecond laser inscription

Mykhaylo Dubov, Sonia Boscolo, and David J. Webb  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 8, pp. 1708-1716 (2014)
http://dx.doi.org/10.1364/OME.4.001708


View Full Text Article

Enhanced HTML    Acrobat PDF (1951 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the operational parameters that are required to fabricate buried, microstructured waveguides in a z-cut lithium niobate crystal by the method of direct femtosecond laser inscription using a high-repetition-rate, chirped-pulse oscillator system. Refractive index contrasts as high as −0.0127 have been achieved for individual modification tracks. The results pave the way for developing microstructured WGs with low-loss operation across a wide spectral range, extending into the mid-infrared region up to the end of the transparency range of the host material.

© 2014 Optical Society of America

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.7370) Optical devices : Waveguides
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Laser Materials Processing

History
Original Manuscript: April 24, 2014
Revised Manuscript: July 18, 2014
Manuscript Accepted: July 19, 2014
Published: July 24, 2014

Citation
Mykhaylo Dubov, Sonia Boscolo, and David J. Webb, "Microstructured waveguides in z-cut LiNbO3 by high-repetition rate direct femtosecond laser inscription," Opt. Mater. Express 4, 1708-1716 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-8-1708


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Osellame, G. Cerullo, and R. Ramponi, eds., Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer-Verlag, 2012). [CrossRef]
  2. H. Misawa and S. Juodkazis, eds., 3D Laser Microfabrication: Principles and Applications (John Wiley & Sons, 2006). [CrossRef]
  3. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Appl. Phys. Lett.21, 1729–1731 (1996).
  4. K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997). [CrossRef]
  5. A. M. Streltsov, “Femtosecond-laser writing of tracks with depressed refractive index in crystals,” in Conference on Laser Micromachining for Optoelectronic Device Fabrication, A. Ostendorf, ed., Proc. SPIE4941, 51–57 (2003). [CrossRef]
  6. I. Bennion, M. Dubov, I. Khruschev, A. Okhrimchuck, and A. Shestakov, “Laser inscription of optical structures in crystals,” Patent WO 2005040874 A2 (2005).
  7. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett.30, 2248–2250 (2005). [CrossRef] [PubMed]
  8. N. Dong, F. Chen, and J. R. Vàsquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond-laser-inscribed KTP cladding waveguides,” Phys. Status Solidi (RRL)6, 306–308 (2012). [CrossRef]
  9. J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photon.1, 58–106 (2009). [CrossRef]
  10. H. Karakuzu, M. Dubov, and S. Boscolo, “Control of the properties of micro-structured waveguides in lithium niobate crystal,” Opt. Express21, 17122–17130 (2013). [CrossRef] [PubMed]
  11. H. Karakuzu, M. Dubov, S. Boscolo, L. A. Melnikov, and Y. A. Mazhirina, “Optimisation of microstructured waveguides in z-cut LiNbO3 crystals,” Opt. Mater. Express4, 541–552 (2014). [CrossRef]
  12. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16, 9443–9458 (2008). [CrossRef] [PubMed]
  13. S. M. Eaton, M. L. Ng, J. Bonse, A. Mermillod-Blondin, H. Zhang, A. Rosenfeld, and P. R. Herman, “Low-loss waveguides fabricated in BK7 glass by high repetition rate femtosecond fiber laser,” Appl. Opt.47, 2098–2102 (2008). [CrossRef] [PubMed]
  14. M. Dubov, “Direct femtosecond laser inscription in transparent dielectrics,” PhD thesis, Aston University (2011).
  15. T. Allsop, M. Dubov, V. Mezentsev, and I. Bennion, “Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800nm,” Appl. Opt.49, 1938–1950 (2010). [CrossRef] [PubMed]
  16. S. Gross, M. Ams, D. G. Lancaster, T. M. Monro, A. Fuerbach, and M. J. Withford, “Femtosecond direct-write überstructure waveguide Bragg gratings in ZBLAN,” Opt. Lett.37, 3999–4001 (2012). [CrossRef] [PubMed]
  17. S. Gross, M. Alberich, A. Arriola, M. J. Withford, and A. Fuerbach, “Fabrication of fully integrated antiresonant reflecting optical waveguides using the femtosecond laser direct-write technique,” Opt. Lett.38, 1872–1874 (2013). [CrossRef] [PubMed]
  18. F. Chen and J. R. Vàsquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Reviews8, 251–275 (2014). [CrossRef]
  19. A. H. Nejadmalayeri and P. R. Herman, “Ultrafast laser waveguide writing: Lithium niobate and the role of circular polarization and picosecond pulse width,” Opt. Lett.31, 2987–2989 (2006). [CrossRef] [PubMed]
  20. A. Fernandez, T. Fuji, A. Poppe, A. Furbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Opt. Lett.29, 1366–1368 (2004). [CrossRef] [PubMed]
  21. R. Graf, A. Fernandez, M. Dubov, H. Brueckner, B. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Applied Physics B: Lasers and Optics87, 21–27 (2007). [CrossRef]
  22. A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009). [CrossRef]
  23. V. Mezentsev, J. Petrovic, M. Dubov, I. Bennion, J. Dreher, H. Schmitz, and R. Grauer, “Femtosecond laser microfabrication of subwavelength structures in photonics,” Proc. SPIE6459, 64590B (2007). [CrossRef]
  24. V. Mezentsev, M. Dubov, J. S. Petrovic, I. Bennion, J. Dreher, and R. Grauer, “Role of plasma in femtosecond laser pulse propagation,” Physics of Ionized Gases876, 169–180 (2006).
  25. A. Turchin, M. Dubov, and J. A. R. Williams, “3d reconstruction of the complex dielectric function of glass during femtosecond laser micro-fabrication,” Opt. Quantum Electron.42, 873–886 (2011). [CrossRef]
  26. B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express19, 9419–9425 (2011). [CrossRef] [PubMed]
  27. M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett.88, 031109 (2006). [CrossRef]
  28. M. Dubov, I. Bennion, D. Nikogosyan, P. Bolger, and A. Zayats, “Point-by-point inscription of 250nm period structure in bulk fused silica by tightly focused femtosecond uv pulses,” J. Opt. A: Pure Appl. Opt.10, 025305 (2008). [CrossRef]
  29. M. Dubov, V. Mezentsev, I. Bennion, and D. N. Nikogosyan, “UV femtosecond laser inscribes a 300nm period nanostructure in a pure fused silica,” Meas. Sci. Technol.18, L15 (2007). [CrossRef]
  30. K. Nugent, “Wave field determination using 3-dimensional intensity information,” Phys. Rev. Lett.68, 2261–2264 (1992). [CrossRef] [PubMed]
  31. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett.23, 817–819 (1998). [CrossRef]
  32. A. Roberts, E. Ampem-Lassen, A. Barty, K. Nugent, G. Baxter, N. Dragomir, and S. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett.27, 2061–2063 (2002). [CrossRef]
  33. E. Ampem-Lassen, S. Huntington, N. Dragomir, K. Nugent, and A. Roberts, “Refractive index profiling of axially symmetric optical fibers: a new technique,” Opt. Express13, 3277–3282 (2005). [CrossRef] [PubMed]
  34. J. S. Petrovic, V. Mezentsev, H. Schmitz, and I. Bennion, “Model of the femtosecond laser inscription by a single pulse,” Opt. Quantum Electron.39, 939–946 (2007). [CrossRef]
  35. W. Yang, P.G. Kazansky, and Yu.P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photon.2, 99–104 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited