OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 8 — Aug. 1, 2014
  • pp: 1717–1724

Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces

Hui Feng Ma, Gui Zhen Wang, Gu Sheng Kong, and Tie Jun Cui  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 8, pp. 1717-1724 (2014)
http://dx.doi.org/10.1364/OME.4.001717


View Full Text Article

Enhanced HTML    Acrobat PDF (3354 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Broadband circular and linear polarization conversions have been proposed in the paper by using thin birefringent reflective metasurfaces, which are composed of two orthogonal I-shaped structures placed on the top of a printed circuit broad with grounded plane on the bottom. We show that the metasurface manipulates the reflective phases of two orthogonal linearly-polarized waves independently by changing the dimensions of I-shaped structure. Hence, the polarization states of a linearly-polarized incident wave with normal incidence can be manipulated as desired after reflected by the anisotropic metasurface. Two polarization conversions have been presented by using such thin birefringent reflective metasurfaces: from linearly-polarized wave to circularly-polarized wave, and from linearly-polarized wave to cross-polarized wave. The metasurfaces work at microwave frequency, and the axial ratio better than 1dB is achieved within fractional bandwidth of 15% for circular polarization. Numerical and experiment results demonstrate good polarization conversions in a broad frequency band, which have excellent agreements with the theoretical calculations.

© 2014 Optical Society of America

OCIS Codes
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization
(350.4010) Other areas of optics : Microwaves

ToC Category:
Artificially Engineered Structures

History
Original Manuscript: June 2, 2014
Revised Manuscript: July 17, 2014
Manuscript Accepted: July 17, 2014
Published: July 30, 2014

Citation
Hui Feng Ma, Gui Zhen Wang, Gu Sheng Kong, and Tie Jun Cui, "Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces," Opt. Mater. Express 4, 1717-1724 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-8-1717


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007). [CrossRef] [PubMed]
  2. J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett.93(25), 251903 (2008). [CrossRef]
  3. M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett.102(13), 131906 (2013). [CrossRef]
  4. Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical Activity,” Appl. Phys. Lett.96(20), 203501 (2010). [CrossRef]
  5. J. H. Shi, X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett.102(19), 191905 (2013). [CrossRef]
  6. J. H. Shi, H. F. Ma, C. Y. Guan, Z. P. Wang, and T. J. Cui, “Broadband chirality and asymmetric transmission in ultrathin 90°-twisted Babinet-inverted metasurfaces,” Phys. Rev. B89(16), 165128 (2014). [CrossRef]
  7. P. E. Sieber and D. H. Werner, “Reconfigurable broadband infrared circularly polarizing reflectors based on phase changing birefringent metasurfaces,” Opt. Express21(1), 1087–1100 (2013). [CrossRef] [PubMed]
  8. M. Farmahini-Farahani and H. Mosallaei, “Birefringent reflectarray metasurface for beam engineering in infrared,” Opt. Lett.38(4), 462–464 (2013). [CrossRef] [PubMed]
  9. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009). [CrossRef] [PubMed]
  10. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012). [CrossRef] [PubMed]
  11. A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett.37(11), 1820–1822 (2012). [CrossRef] [PubMed]
  12. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater.13(2), 139–150 (2014). [CrossRef] [PubMed]
  13. C. Pfeiffer and A. Grbic, “Cascaded metasurfaces for complete phase and polarization control,” Appl. Phys. Lett.102(23), 231116 (2013). [CrossRef]
  14. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science340(6138), 1304–1307 (2013). [CrossRef] [PubMed]
  15. Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett.104(11), 111105 (2014). [CrossRef]
  16. B. Zhu, Y. Feng, J. Zhao, C. Huang, Z. Wang, and T. Jiang, “Polarization modulation by tunable electromagnetic metamaterial reflector/absorber,” Opt. Express18(22), 23196–23203 (2010). [CrossRef] [PubMed]
  17. S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light Beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett.110(20), 207401 (2013). [CrossRef]
  18. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett.14(3), 1394–1399 (2014). [CrossRef] [PubMed]
  19. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012). [CrossRef] [PubMed]
  20. I. Sohail, Y. Ranga, K. P. Esselle, and S. G. Hay, “A linear to circular polarization converter based on Jerusalem-Cross frequency selective surface,” 2013 7th European Conference on Antennas and Propagation (EuCAP), 2141–2143 (2013).
  21. J. S. Tharp, J. M. Lopez-Alonso, J. C. Ginn, B. A. Lail, B. A. Munk, and G. D. Boreman, “Demonstration of a single layer meander line phase retarder at IR,” IEEE Antennas and Propagation Society International Symposium, 829–832 (2006). [CrossRef]
  22. J. Perruisseau-Carrier, “Dual-polarized and polarization-flexible reflective cells with dynamic phase control,” IEEE Trans. Antenn. Propag.58(5), 1494–1502 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited