OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 8 — Aug. 1, 2014
  • pp: 1740–1746

Germanate-tellurite composite fibers with a high-contrast step-index design for nonlinear applications

Mathieu Boivin, Mohammed El-Amraoui, Yannick Ledemi, Steeve Morency, Réal Vallée, and Younès Messaddeq  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 8, pp. 1740-1746 (2014)
http://dx.doi.org/10.1364/OME.4.001740


View Full Text Article

Enhanced HTML    Acrobat PDF (831 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The fabrication process and characterization of composite step-index fibers with a large refractive index difference (Δn = 0.336 at 1.54 μm) between the tellurite glass-made core and the germanate-tellurite glass-made cladding are presented. In order to fabricate these composite fibers, the composition of the cladding glass was selected because of its thermal and optical properties corresponding to those of the core glass. This work demonstrates that even if these two glasses have relatively different chemical compositions, their association results in a good quality fiber. This fiber design combines strong confinement of the optical modes inside its core and good environmental stability for nonlinear applications in the mid-infrared.

© 2014 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4400) Nonlinear optics : Nonlinear optics, materials

ToC Category:
Fiber Materials

History
Original Manuscript: May 16, 2014
Revised Manuscript: June 20, 2014
Manuscript Accepted: June 20, 2014
Published: July 31, 2014

Citation
Mathieu Boivin, Mohammed El-Amraoui, Yannick Ledemi, Steeve Morency, Réal Vallée, and Younès Messaddeq, "Germanate-tellurite composite fibers with a high-contrast step-index design for nonlinear applications," Opt. Mater. Express 4, 1740-1746 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-8-1740


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J.E. Sharping, M. Florentino, P. Kumar, and R.S. Windeler, “All-optical switching based on cross-phase modulation in microstructure fiber,” IEEE Photon. Technol Lett.14, 77–79 (2002). [CrossRef]
  2. A. Masoki, “Nonlinear Optical Properties of Chalcogenide Glass Fibers and Their Application to All-Optical Switching,” Opt. Fiber Technol.3, 142–148 (1997). [CrossRef]
  3. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express17, 12174–12182 (2009). [CrossRef] [PubMed]
  4. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express16, 7161–7168 (2008). [CrossRef] [PubMed]
  5. M. El-Amraoui, G. Gadret, J. C. Jules, J. Fantome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18, 26655 (2010). [CrossRef] [PubMed]
  6. W. Gao, M. El-Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express21, 9573–9584 (2013). [CrossRef] [PubMed]
  7. H.T. Tong, C. Kito, T. Suzuki, and Y. Ohishi, “Fabrication of highly nonlinear optical fibers with tellurite glass core and phosphate glass cladding,” Opt. Mater.34, 1795–1803 (2012). [CrossRef]
  8. M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express17, 21608–21614 (2009). [CrossRef] [PubMed]
  9. Z. Duan, M. Liao, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Tellurite Composite Microstructured Optical Fibers with Tailored Chromatic Dispersion for Nonlinear Applications,” Appl. Phys. Express4, 072502 (2011). [CrossRef]
  10. N. Granzow, P. Uebel, M. A. Schmidt, A. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett. Express36, 2432–2434 (2011). [CrossRef]
  11. V.V. Dorofeev, A.N. Moiseev, M.F. Churbanov, G.E. Snopatin, A.V. Chilyasov, I.A. Kraev, A.S. Lobanov, T.V. Kotereva, L.A. Ketkova, A.A. Pushkin, V.V. Gerasimenko, V.G. Plotnichenko, A.F. Kosolapov, and E.M. Dianov, “High-purity TeO2–WO3–(La2O3, Bi2O3) glasses for fiber-optics,” Opt. Mater.33, 1911–1915 (2011). [CrossRef]
  12. K. Clarke and Y. Ito, “Manufacture of fluoride glass preforms,” J. Non-Cryst. Solids140, 265–268 (1992). [CrossRef]
  13. A. Zhang, A. Lin, and J. Toulouse, “Ultra-dry oxygen atmosphere to protect tellurite glass fiber from surface crystallization,” J. Non-Cryst. Solids356, 525–528 (2010). [CrossRef]
  14. A. T. Riga and M. C. Neag, “Materials Characterization by Thermomechanical Analysis,” (ASTM International, 1991).
  15. G. Ghosh, “Sellmeier Coefficients and Chromatic Dispersions for Some Tellurite Glasses,” J. Am. Ceram. Soc.78, 2828–2830 (1995). [CrossRef]
  16. M. Sheik-bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett.14, 955–957 (1989). [CrossRef] [PubMed]
  17. G. Tsigaridas, M. Fakis, I. Polyzos, P. Persephonis, and V. Giannetas, “Z-scan technique for elliptic Gaussian beams,” Appl. Phys. B77, 71–75 (2003). [CrossRef]
  18. M. G. Drexhage, O. H. El-Bayoumi, C.t. Moynihan, A. J. Bruce, K.-H. Chung, D. L. Gavin, and T. J. Loretz, “Preparation and Properties of Heavy-Metal Fluoride Glasses Containing Ytterbium or Lutetium,” J. Am. Ceram. Soc.65, c168–c171 (1982). [CrossRef]
  19. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater.3, 187–203 (1994). [CrossRef]
  20. L. Le Neindre, S. Jiang, B.-C. Hwang, T. Luo, J. Watson, and N. Peyghambarian, “Effect of relative alkali content on absorption linewidth in erbium-doped tellurite glasses,” J. Non-Cryst. Solids255, 97–102 (1999). [CrossRef]
  21. M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and Fluorotellurite Glasses for Fiber optic Raman Amplifiers,” J. Am. Ceram. Soc.90, 1448–1457 (2007). [CrossRef]
  22. J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardson, “Processing of Tellurite-Based Glass with Low OH Content,” J. Am. Ceram. Soc.94, 130–136 (2011). [CrossRef]
  23. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air silica microstructure optical fibers,” Opt. Lett.25, 796–798 (2000). [CrossRef]
  24. D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, “Nonlinear refractive index of fs-laser-written waveguides in fused silica,” Opt. Express14, 2151–2157 (2006). [CrossRef] [PubMed]
  25. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited