OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 9 — Sep. 1, 2014
  • pp: 1762–1769

Synthesis mechanism and optical properties of well nanoflower-shaped ZnO fabricated by a facile method

Liu Hongjun, Zhigang Zang, and Xiaosheng Tang  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 9, pp. 1762-1769 (2014)
http://dx.doi.org/10.1364/OME.4.001762


View Full Text Article

Enhanced HTML    Acrobat PDF (2014 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photoluminescent ZnO nanoparticles have wide applications in biolabeling. A dual phase hydrothermal method has been developed in this paper to synthesize nanoflower-shaped ZnO nanoparticles. Hydrogen peroxide was identified as a unique oxygenic source to promote the formation of ZnO nanoflowers from the organic zinc precursor. The reaction mechanism for the formation of ZnO nanoflowers was proposed and studied by Fourier transform infrared (FTIR). The as-prepared hydrophobic colloidal ZnO nanoparticles could be subsequently modified to water-soluble ZnO nanoflowers via a ligand exchange process with aminethanethiol HCl. The structure and optical properties of the ZnO nanoparticles were studied by transmission electron microscopy, X-ray diffraction, and photoluminescence measurement (PL). Both types of ZnO nanoflowers demonstrated good photoluminescent properties which could have wide applications.

© 2014 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Nanomaterials

History
Original Manuscript: June 16, 2014
Revised Manuscript: July 28, 2014
Manuscript Accepted: July 30, 2014
Published: August 5, 2014

Citation
Liu Hongjun, Zhigang Zang, and Xiaosheng Tang, "Synthesis mechanism and optical properties of well nanoflower-shaped ZnO fabricated by a facile method," Opt. Mater. Express 4, 1762-1769 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-9-1762


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. H. Zhong, Y. Y. Feng, Y. L. Zhang, I. Lieberwirth, and W. Knoll, “Nonhydrolytic alcoholysis route to morphology-controlled ZnO nanocrystals,” Small3(7), 1194–1199 (2007). [CrossRef] [PubMed]
  2. B. Dev Choudhury, A. Abedin, A. Dev, R. Sanatinia, and S. Anand, “Silicon micro-structure and ZnO nanowire hierarchical assortments for light management,” Opt. Mater. Express3(8), 1039–1048 (2013). [CrossRef]
  3. S. Chibber, S. A. Ansari, and R. Satar, “New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects,” J. Nanopart. Res.15(4), 1492–1504 (2013). [CrossRef]
  4. S. K. Arya, S. Saha, J. E. R. Ramirez-Vick, V. Gupta, S. Bhansali, and S. P. Singh, “Recent advances in ZnO nanostructures and thin films for biosensor applications: Review,” Anal. Chim. Acta737(1), 1–21 (2012). [CrossRef] [PubMed]
  5. J. Gomez and O. Tigli, “Zinc oxide nanostructures: from growth to application,” J. Mater. Sci.48(2), 612–624 (2013). [CrossRef]
  6. A. Moezzi, A. M. McDonagh, and M. B. Cortie, “Zinc oxide particles: synthesis, properties and applications,” Chem. Eng. J.185-186(1), 1–22 (2012). [CrossRef]
  7. H. M. Xiong, Y. Xu, Q. G. Ren, and Y. Y. Xia, “Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging,” J. Am. Chem. Soc.130(24), 7522–7523 (2008). [CrossRef] [PubMed]
  8. X. Tang, E. S. G. Choo, L. Li, J. Ding, and J. Xue, “One-pot synthesis of water-stable ZnO nanoparticles via a polyol hydrolysis route and their cell labeling applications,” Langmuir25(9), 5271–5275 (2009). [CrossRef] [PubMed]
  9. B. E. Urban, J. Lin, O. Kumar, K. Senthilkumar, Y. Fujita, and A. Neogi, “Optimization of nonlinear optical properties of ZnO micro and nanocrystals for biophotonics,” Opt. Mater. Express1(4), 658–669 (2011). [CrossRef]
  10. H. J. Zhang, H. M. Xiong, Q. G. Ren, Y. Y. Xia, and J. L. Kong, “ZnO@silica core–shell nanoparticles with remarkable luminescence and stability in cell imaging,” J. Mater. Chem.22(26), 13159–13165 (2012). [CrossRef]
  11. F. Aldeek, C. Mustin, L. Balan, G. Medjahdi, T. Roques-Carmes, P. Arnoux, and R. Schneider, “Enhanced photostability from CdSe(S)/ZnO core/shell quantum dots and their use in biolabeling,” Eur. J. Inorg. Chem.2011(6), 794–801 (2011). [CrossRef]
  12. Y. Liu, K. Ai, Q. Yuan, and L. Lu, “Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging,” Biomaterials32(4), 1185–1192 (2011). [CrossRef] [PubMed]
  13. H. M. Xiong, “Photoluminescent ZnO nanoparticles modified by polymers,” J. Mater. Chem.20(21), 4251–4262 (2010). [CrossRef]
  14. L. Spanhel and M. A. Anderson, “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids,” J. Am. Chem. Soc.113(8), 2826–2833 (1991). [CrossRef]
  15. Y. Zhang, X. Wang, Y. Liu, S. Song, and D. Liu, “Highly transparent bulk PMMA/ZnO nanocomposites with bright visible luminescence and efficient UV-shielding capability,” J. Mater. Chem.22(24), 11971–11977 (2012). [CrossRef]
  16. L. H. Zhao and S. Q. Sun, “Synthesis of water-soluble ZnO nanocrystals with strong blue emission via a polyol hydrolysis route,” CrystEngComm13(6), 1864–1869 (2011). [CrossRef]
  17. Y. S. Fu, X. W. Du, S. A. Kulinich, J. S. Qiu, W. J. Qin, R. Li, J. Sun, and J. Liu, “Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route,” J. Am. Chem. Soc.129(51), 16029–16033 (2007). [CrossRef] [PubMed]
  18. X. Y. Xue, Z. H. Chen, L. L. Xing, C. H. Ma, Y. J. Chen, and T. H. Wang, “Enhanced optical and sensing properties of one-step synthesized Pt−ZnO nanoflowers,” J. Phys. Chem. C114(43), 18607–18611 (2010). [CrossRef]
  19. H. R. Pant, B. Pant, R. K. Sharma, A. Amarjargal, H. J. Kim, C. H. Park, L. D. Tijing, and C. S. Kim, “Antibacterial and photocatalytic properties of Ag/TiO2/ZnO nano-flowers prepared by facile one-pot hydrothermal process,” Ceram. Int.39(2), 1503–1510 (2013). [CrossRef]
  20. A. Umar, M. S. Akhtar, A. Al-Hajry, M. S. Al-Assiri, and N. Y. Almehbad, “Hydrothermally grown ZnO nanoflowers for environmental remediation and clean energy applications,” Mater. Res. Bull.47(9), 2407–2414 (2012). [CrossRef]
  21. A. Umar, M. M. Rahman, A. Al-Hajry, and Y. B. Hahn, “Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures,” Talanta78(1), 284–289 (2009). [CrossRef] [PubMed]
  22. S. T. Kochuveedu, J. H. Oh, Y. R. Do, and D. H. Kim, “Surface-plasmon-enhanced band emission of ZnO nanoflowers decorated with Au nanoparticles,” Chemistry18(24), 7467–7472 (2012). [CrossRef] [PubMed]
  23. Z. W. Ai, Y. Wu, H. Wu, T. Wang, C. Chen, Y. Xu, and C. Liu, “Enhanced band-edge photoluminescence from ZnO-passivated ZnO nanoflowers by atomic layer deposition,” Nanoscale Res. Lett.8(1), 105–111 (2013). [CrossRef] [PubMed]
  24. N. Gaponik, D. V. Talapin, A. L. Rogach, A. Kornowski, A. Eychmüller, and H. Weller, “Efficient phase transfer of luminescent thiol-capped nanocrystals: from water to nonpolar organic solvents,” Nano Lett.2(8), 803–806 (2002). [CrossRef]
  25. R. Xie, U. Kolb, J. X. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc.127(20), 7480–7488 (2005). [CrossRef] [PubMed]
  26. J. I. Kim and J. K. Lee, “Sub-kilogram-scale one-pot synthesis of highly luminescent and monodisperse core/shell quantum dots by the successive injection of precursors,” Adv. Funct. Mater.16(16), 2077–2082 (2006). [CrossRef]
  27. A. Narayanaswamy, H. Xu, N. Pradhan, M. Kim, and X. Peng, “Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis,” J. Am. Chem. Soc.128(31), 10310–10319 (2006). [CrossRef] [PubMed]
  28. Y. Chen, M. Kim, G. Lian, M. B. Johnson, and X. Peng, “Side reactions in controlling the quality, yield, and stability of high quality colloidal nanocrystals,” J. Am. Chem. Soc.127(38), 13331–13337 (2005). [CrossRef] [PubMed]
  29. X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc.119(30), 7019–7029 (1997). [CrossRef]
  30. Q. Wu, H. Cao, S. Zhang, X. Zhang, and D. Rabinovich, “Generation and optical properties of monodisperse wurtzite-type ZnS microspheres,” Inorg. Chem.45(18), 7316–7322 (2006). [CrossRef] [PubMed]
  31. B. Zhang, X. Ye, W. Hou, Y. Zhao, and Y. Xie, “Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods,” J. Phys. Chem. B110(18), 8978–8985 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited