OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 9 — Sep. 1, 2014
  • pp: 1787–1793

Anisotropy of nonlinear optical properties in monoclinic crystal TmCa4O(BO3)3

Yanqing Liu, Fapeng Yu, Zhengping Wang, Xinguang Xu, and Xian Zhao  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 9, pp. 1787-1793 (2014)
http://dx.doi.org/10.1364/OME.4.001787


View Full Text Article

Enhanced HTML    Acrobat PDF (885 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

New nonlinear optical (NLO) crystals TmCa4O(BO3)3 (TmCOB) were grown by the Czochralski pulling method, and the anisotropy of second-harmonic-generation (SHG) properties were characterized. Based on the ratio of the peaks of the 2ω signals produced by TmCOB and that of KTP crystal samples at the low fundamental energy, the NLO tensor coefficients d12, d32, d31 and d13 were determined and found to be 0.24, 1.70, −0.55 and −0.32 pm/V, respectively. At 1064 nm, the phase-matching (PM) curves and the effective NLO coefficients (deff) in spatial distribution were evaluated. Efficient SHG was realized on a (32.5°, 180°)-cut TmCOB sample (4 × 4 × 11.8 mm3) in principal plane, by using a 1064 nm Nd:YAG pico-second laser, where the highest conversion efficiency of the single-pass light reached up to 51%, while for a (112.5°, 35.9°)-cut TmCOB sample (4 × 4 × 8 mm3) in spatial PM direction, the single-pass light reached 58%. Meanwhile, the angular noncritical phase matching (A-NCPM) wavelengths along the Y and Z principal axes were calculated and measured, and the limit of type-I PM wavelength of TmCOB was found to be 716 nm.

© 2014 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(190.4400) Nonlinear optics : Nonlinear optics, materials
(140.3515) Lasers and laser optics : Lasers, frequency doubled

ToC Category:
Nonlinear Optical Materials

History
Original Manuscript: June 13, 2014
Revised Manuscript: August 3, 2014
Manuscript Accepted: August 4, 2014
Published: August 6, 2014

Citation
Yanqing Liu, Fapeng Yu, Zhengping Wang, Xinguang Xu, and Xian Zhao, "Anisotropy of nonlinear optical properties in monoclinic crystal TmCa4O(BO3)3," Opt. Mater. Express 4, 1787-1793 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-9-1787


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. P. Mildren, H. M. Pask, H. Ogilvy, and J. A. Piper, “Discretely tunable, all-solid-state laser in the green, yellow, and red,” Opt. Lett.30(12), 1500–1502 (2005). [CrossRef] [PubMed]
  2. J. Capmany, D. Jaque, J. Garca Solé, and A. A. Kaminskii, “Continuous wave laser radiation at 524 nm from a self-frequency-doubled laser of LaBGeO5:Nd3+,” Appl. Phys. Lett.72(5), 531–533 (1998). [CrossRef]
  3. R. Sarrouf, V. Sousa, T. Badr, G. B. Xu, and J. J. Zondy, “Watt-level single-frequency tunable Nd:YLF/periodically poled KTiOPO4 red laser,” Opt. Lett.32(18), 2732–2734 (2007). [CrossRef] [PubMed]
  4. J. Liu, X. Xu, C. Q. Wang, S. Zhang, J. Wang, H. Chen, Z. Shao, and M. Jiang, “Intracavity second-harmonic generation of 1.06 μm in GdCa4O(BO3)3 crystals,” Appl. Phys. B72(2), 163–166 (2001). [CrossRef]
  5. S. J. Zhang, Z. X. Cheng, J. H. Liu, G. M. Li, J. R. Han, Z. S. Shao, and H. C. Chen, “Study on the second-harmonic-generation of GdCa4O(BO3)3 crystals along various phase-matching directions,” Opt. Laser Technol.32(2), 153–155 (2000). [CrossRef]
  6. G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B14(9), 2238–2247 (1997). [CrossRef]
  7. J. J. Adams, C. A. Ebbers, K. I. Schaffers, and S. A. Payne, “Nonlinear optical properties of LaCa4O(BO3)3.,” Opt. Lett.26(4), 217–219 (2001). [CrossRef] [PubMed]
  8. Y. T. Fei, B. H. T. Chai, C. A. Ebbers, Z. M. Liao, K. I. Schaffers, and P. Thelin, “Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system,” J. Cryst. Growth290(1), 301–306 (2006). [CrossRef]
  9. F. P. Yu, S. J. Zhang, X. Zhao, S. Y. Guo, X. L. Duan, D. Y. Yuan, and T. R. Shrout, “Investigation of the dielectric and piezoelectric properties of ReCa4(BO3)3 crystals,” J. Phys. D Appl. Phys.44(13), 135405 (2011). [CrossRef]
  10. A. Yoshida, A. Schmidt, V. Petrov, C. Fiebig, G. Erbert, J. H. Liu, H. J. Zhang, J. Y. Wang, and U. Griebner, “Diode-pumped mode-locked Yb:YCOB laser generating 35 fs pulses,” Opt. Lett.36(22), 4425–4427 (2011). [CrossRef] [PubMed]
  11. F. Druon, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Hönninger, F. Salin, A. Aron, F. Mougel, G. Aka, and D. Vivien, “Generation of 90-fs pulses from a mode-locked diode-pumped Yb3+:Ca4GdO(BO3)3 laser,” Opt. Lett.25(6), 423–425 (2000). [CrossRef] [PubMed]
  12. H. H. Yu, N. Zong, Z. B. Pan, H. J. Zhang, J. Y. Wang, Z. P. Wang, and Z. Y. Xu, “Efficient high-power self-frequency-doubling Nd:GdCOB laser at 545 and 530 nm,” Opt. Lett.36(19), 3852–3854 (2011). [CrossRef] [PubMed]
  13. Z. M. Liao, I. Jovanovic, C. A. Ebbers, Y. T. Fei, and B. Chai, “Energy and average power scalable optical parametric chirped-pulse amplification in yttrium calcium oxyborate,” Opt. Lett.31(9), 1277–1279 (2006). [CrossRef] [PubMed]
  14. L. H. Yu, X. Y. Liang, J. F. Li, A. H. Wu, Y. Q. Zheng, X. M. Lu, C. Wang, Y. X. Leng, J. Xu, R. X. Li, and Z. Z. Xu, “Experimental demonstration of joule-level non-collinear optical parametric chirped-pulse amplification in yttrium calcium oxyborate,” Opt. Lett.37(10), 1712–1714 (2012). [CrossRef] [PubMed]
  15. S. J. Zhang, Z. X. Cheng, S. J. Zhang, J. R. Han, L. K. Sun, and H. C. Chen, “Growth and noncritical phase-matching third-harmonic-generation of GdxY1-xCa4O(BO3)3 crystal,” J. Cryst. Growth213(3-4), 415–418 (2000). [CrossRef]
  16. M. Yoshimura, H. Furuya, T. Kobayashi, K. Murase, Y. Mori, and T. Sasaki, “Noncritically phase-matched frequency conversion in GdxY1-xCa4O(BO3)3 crystal,” Opt. Lett.24(4), 193–195 (1999). [CrossRef] [PubMed]
  17. Z. P. Wang, X. G. Xu, K. Fu, R. B. Song, J. Y. Wang, J. Q. Wei, Y. G. Liu, and Z. S. Shao, “Non-critical phase matching of GdxY1-xCa4O(BO3)3(GdxY1-xCOB) crystal,” Solid State Commun.120(9-10), 397–400 (2001). [CrossRef]
  18. C. T. Chen, N. Ye, J. Lin, J. Jiang, W. R. Zeng, and B. C. Wu, “Computer-assisted search for nonlinear optical crystals,” Adv. Mater.11(13), 1071–1078 (1999). [CrossRef]
  19. P. Becker, “Borate materials in nonlinear optics,” Adv. Mater.10(13), 979–992 (1998). [CrossRef]
  20. A. J. Nelson, J. J. Adams, and K. I. Schaffers, “Photoemission investigation of the electronic structure of lanthanum–calcium oxoborate,” J. Appl. Phys.94(12), 7493–7495 (2003). [CrossRef]
  21. L. Gheorghe, V. Lupei, P. Loiseau, G. Aka, and T. Taira, “Second-harmonic generations of blue light in nonlinear optical crystals of Gd1−xLuxCa4O(BO3)3 and Gd1−xScxCa4O(BO3)3 through noncritical phase matching,” J. Opt. Soc. Am. B23(8), 1630–1634 (2006). [CrossRef]
  22. M. T. Andersen, J. L. Mortensen, S. Germershausen, P. Tidemand-Lichtenberg, P. Buchhave, L. Gheorghe, V. Lupei, P. Loiseau, and G. Aka, “First measurement of the nonlinear coefficient for Gd1-xLuxCa4O(BO3)3 and Gd1-xScxCa4O(BO3)3 crystals,” Opt. Express15(8), 4893–4901 (2007). [CrossRef] [PubMed]
  23. M. V. Pack, D. J. Armstrong, A. V. Smith, G. Aka, B. Ferrand, and D. Pelenc, “Measurement of the χ(2) tensor of GdCa4O(BO3)3 and YCa4O(BO3)3 crystals,” J. Opt. Soc. Am. B22(2), 417–425 (2005). [CrossRef]
  24. P. Tzankov and V. Petrov, “Effective second-order nonlinearity in acentric optical crystals with low symmetry,” Appl. Opt.44(32), 6971–6985 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited