OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 9 — Sep. 1, 2014
  • pp: 1794–1799

Thermo-optic properties of ceramic YAG at high temperatures

Hiroaki Furuse, Ryo Yasuhara, and Keijiro Hiraga  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 9, pp. 1794-1799 (2014)
http://dx.doi.org/10.1364/OME.4.001794


View Full Text Article

Enhanced HTML    Acrobat PDF (1051 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The thermo-optic coefficient dn/dT at 632.8 nm and thermal expansion coefficient α of transparent ceramic yttrium aluminum garnet (YAG) were measured between room temperature and 600 K. The data showed that dn/dT increases with temperature and α is in good agreement with that of single-crystal YAG. To the best of our knowledge, these are the first experimental data of the thermo-optic properties of highly transparent ceramic YAG above room temperature. We also present, using previously reported values measured below room temperature, fitting parameters for dn/dT that are valid over a wide temperature range (70–600 K) with an average error of 2.0%.

© 2014 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.6810) Lasers and laser optics : Thermal effects
(160.4760) Materials : Optical properties

ToC Category:
Laser Materials

History
Original Manuscript: June 12, 2014
Revised Manuscript: July 25, 2014
Manuscript Accepted: August 3, 2014
Published: August 7, 2014

Citation
Hiroaki Furuse, Ryo Yasuhara, and Keijiro Hiraga, "Thermo-optic properties of ceramic YAG at high temperatures," Opt. Mater. Express 4, 1794-1799 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-9-1794


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008). [CrossRef]
  2. T. Taira, “Re3+-ion doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 798–809 (2007). [CrossRef]
  3. M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett.90(12), 121101 (2007). [CrossRef]
  4. R. M. Yamamoto, B. S. Bhachu, K. P. Cutter, S. N. Fochs, S. A. Lets, C. W. Parks, M. D. Rotter, and T. F. Soules, “The use of large transparent ceramics in a high powered, diode pumped solid-state laser,” in Conference on Advanced Solid-State Photonics (ASSP), Technical Digest (Optical Society of America, 2008), paper WC5. [CrossRef]
  5. H. Furuse, J. Kawanaka, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, K. Takeshita, S. Ishii, and Y. Izawa, “Zig-zag active-mirror laser with cryogenic Yb3+:YAG/YAG composite ceramics,” Opt. Express19(3), 2448–2455 (2011). [CrossRef] [PubMed]
  6. W. Koechner, Solid-State Laser Engineering (Springer, 2006).
  7. D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron.33(5), 861–873 (1997). [CrossRef]
  8. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98(10), 103514 (2005). [CrossRef]
  9. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 587–599 (2005). [CrossRef]
  10. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007). [CrossRef]
  11. Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express14(22), 10528–10536 (2006). [CrossRef] [PubMed]
  12. H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12: Elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int.33(5), 711–714 (2007). [CrossRef]
  13. Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater.31(5), 720–724 (2009). [CrossRef]
  14. Y. Sato and T. Taira, “Highly accurate interferometric evaluation of thermal expansion and dn/dT of optical materials,” Opt. Mater. Express4(5), 876–888 (2014). [CrossRef]
  15. S. Geller, G. P. Espinosa, and P. B. Crandall, “Thermal expansion of yttrium and gadolinium iron, gallium and aluminum garnets,” J. Appl. Cryst.2(2), 86–88 (1969). [CrossRef]
  16. K. L. Ovanesyan, A. G. Petrosyan, G. O. Shirinyan, and A. A. Avetisyan, “Optical dispersion and thermal expansion of garnets Lu3Al5O12, Er3Al5O12, and Y3Al5O12,” Inorg. Mater.17, 308–310 (1981).
  17. T. K. Gupta and J. Valentich, “Thermal expansion of yttrium aluminum garnet,” J. Am. Ceram. Soc.54(7), 355–356 (1971). [CrossRef]
  18. J. D. Foster and L. M. Osterink, “Index of refraction and expansion thermal coefficients of Nd:YAG,” Appl. Opt.7(12), 2428–2429 (1968). [CrossRef] [PubMed]
  19. T. Y. Fan and J. L. Daneu, “Thermal coefficients of the optical path length and refractive index in YAG,” Appl. Opt.37(9), 1635–1637 (1998). [CrossRef] [PubMed]
  20. R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt.38(15), 3282–3284 (1999). [CrossRef] [PubMed]
  21. R. Yasuhara, H. Furuse, A. Iwamoto, J. Kawanaka, and T. Yanagitani, “Evaluation of thermo-optic characteristics of cryogenically cooled Yb:YAG ceramics,” Opt. Express20(28), 29531–29539 (2012). [CrossRef] [PubMed]
  22. V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater.34(6), 990–994 (2012). [CrossRef]
  23. Yu. N. Barabanenkov, S. N. Ivanov, A. V. Taranov, E. N. Khazanov, H. Yagi, T. Yanagitani, K. Takaichi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Nonequilibrium acoustic phonons in Y3Al5O12-based nanocrystalline ceramics,” J. Exp. Theor. Phys. Lett.79(7), 342–345 (2004). [CrossRef]
  24. G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Application (Academic Press 1998).
  25. L. G. DeShazer, S. C. Rand, and B. A. Wechsler, Laser crystals, in Handbook of Laser Science and Technology, Vol. V: Optical Materials, Part 3, M. J. Weber, ed. (CRC Press, 1987).
  26. X. Xu, Z. Zhao, J. Xu, and P. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1-x)Al5O12 (x=0.05, 0.1 and 0.25) single crystals,” Solid State Commun.130(8), 529–532 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited