OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 9 — Sep. 1, 2014
  • pp: 1800–1806

Improvement of optical properties and suppression of second phase exsolution by doping fluorides in Y3Al5O12 transparent ceramics

Jintai Fan, Siyuan Chen, Benxue Jiang, Liangjie Pan, Yang Zhang, Xiaojian Mao, Xinqiang Yuan, Rihong Li, Xiongwei Jiang, and Long Zhang  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 9, pp. 1800-1806 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2700 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Transparent Y3Al5O12 (YAG) ceramics haze in annealing and thermal-bonding because of second phase exsolution. To address this problem, SiO2 and fluorides co-doped transparent ceramics were prepared from YAG powders by slip casting and vacuum sintering method. 0~0.18 wt% of fluorides were doped into YAG ceramics as sintering aids along with 0~1.5 wt% of SiO2. Fluorides prompted sintering process and improved optical properties of sintered samples. SiO2 lightly doped (0.027 wt%) YAG transparent ceramics were obtained by co-doping with fluorides. Composition analysis showed that fluorides decreased Si content in sintered YAG ceramics and as a result, the formation of Si-riched second phase was successfully suppressed in annealing process.

© 2014 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(160.3380) Materials : Laser materials
(160.4670) Materials : Optical materials

ToC Category:
Laser Materials

Original Manuscript: June 16, 2014
Revised Manuscript: July 17, 2014
Manuscript Accepted: July 17, 2014
Published: August 8, 2014

Jintai Fan, Siyuan Chen, Benxue Jiang, Liangjie Pan, Yang Zhang, Xiaojian Mao, Xinqiang Yuan, Rihong Li, Xiongwei Jiang, and Long Zhang, "Improvement of optical properties and suppression of second phase exsolution by doping fluorides in Y3Al5O12 transparent ceramics," Opt. Mater. Express 4, 1800-1806 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett.89(9), 091114 (2006).
  2. N. Ter-Gabrielyan, L. D. Merkle, E. R. Kupp, G. L. Messing, and M. Dubinskii, “Efficient resonantly pumped tape cast composite ceramic Er:YAG laser at 1645 nm,” Opt. Lett.35(7), 922–924 (2010). [CrossRef] [PubMed]
  3. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995). [CrossRef]
  4. T. Yanagitani, H. Yagi, and Y. Yamasaki, “Production of fine powder of yttrium aluminum garnet,” Japanese patent 10–101411, 1998.
  5. T. Yanagitani, H. Yagi, and M. Ichikawa, “Production of yttrium-aluminum-garnet fine powder,” Japanese patent 10–101333, 1998.
  6. J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett.78(23), 3586–3588 (2001). [CrossRef]
  7. M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12microchip laser,” Appl. Phys. Lett.90(12), 121101 (2007). [CrossRef]
  8. H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, and X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett.36(9), 1575–1577 (2011). [CrossRef] [PubMed]
  9. K. Ueda, “Recent progress of high-power ceramic lasers,” presented at the Third International Conference on Ultrahigh Intensity Lasers Tongli, China, 27–31 Oct. 2008.
  10. S. Jiang, T. Lu, and J. Chen, “Ab initio study the effects of Si and Mg dopants on point defects and Y diffusion in YAG,” Comput. Mater. Sci.69(0), 261–266 (2013). [CrossRef]
  11. A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc.94(5), 1380–1387 (2011). [CrossRef]
  12. F. Tang, J. Huang, W. Guo, W. Wang, B. Fei, and Y. Cao, “Photoluminescence and laser behavior of Yb:YAG ceramic,” Opt. Mater.34(5), 757–760 (2012). [CrossRef]
  13. S.-H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis-Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc.92(7), 1456–1463 (2009). [CrossRef]
  14. K. Fujioka, A. Sugiyama, Y. Fujimoto, K. Kawanaka, and N. Miyanaga, “Ion diffusion at bonding interface of composite ceramic YAG,” presented at the Ninth Laser Ceramics Symposium, Daejeon, Korea, 2–3 Dec. 2013.
  15. A. J. Stevenson, E. R. Kupp, and G. L. Messing, “Low temperature, transient liquid phase sintering of B2O3-SiO2-doped Nd:YAG transparent ceramics,” J. Mater. Res.26(9), 1151–1158 (2011). [CrossRef]
  16. R. Boulesteix, A. Maître, L. Chrétien, Y. Rabinovitch, and C. Sallé, “Microstructural evolution during vacuum sintering of yttrium aluminum garnet transparent ceramics: toward the origin of residual porosity affecting the transparency,” J. Am. Ceram. Soc.96(6), 1724–1731 (2013). [CrossRef]
  17. M. Suárez, A. Fernández, J. L. Menéndez, M. Nygren, R. Torrecillas, and Z. Zhao, “Hot isostatic pressing of optically active Nd:YAG powders doped by a colloidal processing route,” J. Eur. Ceram. Soc.30(6), 1489–1494 (2010). [CrossRef]
  18. A. Ikesue and K. Kamata, “Role of Si on Nd solid-solution of YAG ceramics,” J. Ceram. Soc. Jpn.103(1197), 489–493 (1995). [CrossRef]
  19. G. Lambotte and P. Chartrand, “Thermodynamic evaluation and optimization of the Al2O3–SiO2–AlF3–SiF4 reciprocal system using the modified quasichemical model,” J. Am. Ceram. Soc.94(11), 4000–4008 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited