OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 9 — Sep. 1, 2014
  • pp: 1824–1832

Luminance enhancement of electroluminescent devices using highly dielectric UV-curable polymer and oxide nanoparticle composite

Seok-Hwan Chung, Seongkyu Song, Kee-Jeong Yang, Soon Moon Jeong, and Byeongdae Choi  »View Author Affiliations


Optical Materials Express, Vol. 4, Issue 9, pp. 1824-1832 (2014)
http://dx.doi.org/10.1364/OME.4.001824


View Full Text Article

Enhanced HTML    Acrobat PDF (1246 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A flexible hybrid structure electroluminescent (HSEL) device was fabricated from ZnS:Cu phosphor microparticles dispersed in a UV-curable polymer matrix. We observed a maximum luminance of 111 cd/m2 at 10 kHz and 170 V from a device wherein the mixing ratio between the phosphor particles and highly dielectric polymer binder was 70:30 wt%. Furthermore, by uniformly dispersing highly dielectric BaTiO3 nanoparticles within the polymer matrix, we were able to obtain a luminance of up to 211 cd/m2 in the HSEL device. Compared to the conventional thermal curing process, this UV process greatly simplifies the fabrication steps by combining phosphors and dielectric materials at room temperature. This process also demonstrates a promising pathway toward creating flexible and printed EL devices in the future.

© 2014 Optical Society of America

OCIS Codes
(120.2040) Instrumentation, measurement, and metrology : Displays
(160.5470) Materials : Polymers
(230.0230) Optical devices : Optical devices
(260.3800) Physical optics : Luminescence
(160.4236) Materials : Nanomaterials

ToC Category:
Fluorescent and Luminescent Materials

History
Original Manuscript: July 9, 2014
Revised Manuscript: July 29, 2014
Manuscript Accepted: August 3, 2014
Published: August 11, 2014

Citation
Seok-Hwan Chung, Seongkyu Song, Kee-Jeong Yang, Soon Moon Jeong, and Byeongdae Choi, "Luminance enhancement of electroluminescent devices using highly dielectric UV-curable polymer and oxide nanoparticle composite," Opt. Mater. Express 4, 1824-1832 (2014)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-4-9-1824


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S.-I. Park, Y. Xiong, R.-H. Kim, P. Elvikis, M. Meitl, D.-H. Kim, J. Wu, J. Yoon, C.-J. Yu, Z. Liu, Y. Huang, K.-C. Hwang, P. Ferreira, X. Li, K. Choquette, and J. A. Rogers, “Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays,” Science325(5943), 977–981 (2009). [CrossRef] [PubMed]
  2. M. S. White, M. Kaltenbrunner, E. D. Głowacki, K. Gutnichenko, G. Kettlgruber, I. Graz, S. Aazou, C. Ulbricht, D. A. M. Egbe, M. C. Miron, Z. Major, M. C. Scharber, T. Sekitani, T. Someya, S. Bauer, and N. S. Sariciftci, “Ultrathin, highly flexible and stretchable PLEDs,” Nat. Photonics7(10), 811–816 (2013). [CrossRef]
  3. D.-H. Kim, J. Viventi, J. J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim, J. A. Blanco, B. Panilaitis, E. S. Frechette, D. Contreras, D. L. Kaplan, F. G. Omenetto, Y. Huang, K.-C. Hwang, M. R. Zakin, B. Litt, and J. A. Rogers, “Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics,” Nat. Mater.9(6), 511–517 (2010). [CrossRef] [PubMed]
  4. K.-I. Park, J. H. Son, G.-T. Hwang, C. K. Jeong, J. Ryu, M. Koo, I. Choi, S. H. Lee, M. Byun, Z. L. Wang, and K. J. Lee, “Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates,” Adv. Mater.26(16), 2514–2520 (2014). [CrossRef] [PubMed]
  5. T. I. Kim, Y. H. Jung, J. Song, D. Kim, Y. Li, H. S. Kim, I.-S. Song, J. J. Wierer, H. A. Pao, Y. Huang, and J. A. Rogers, “High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates,” Small8(11), 1643–1649 (2012). [CrossRef] [PubMed]
  6. H. Kobayashi, K. Ohmi, K. Ichino, and T. Kunimoto, “Research on inorganic electroluminescence – present status,” Phys. Status Solidi205(1), 11–14 (2008). [CrossRef]
  7. W. M. Yen, S. Shinoya, and H. Yamamoto, Fundamentals of Phosphors (CRC Press, 2007).
  8. P. D. Rack and P. H. Holloway, “The structure, device physics, and material properties of thin film electroluminescent displays,” Mater. Sci. Eng.R21, 171–219 (1997).
  9. A. N. Krasnov, “Selection of dielectrics for alternating-current thin-film electroluminescent device,” Thin Solid Films347(1-2), 1–13 (1999). [CrossRef]
  10. W. E. Howard, “The importance of insulator properties in a thin-film electroluminescent device,” IEEE Trans. Electron. Dev.24(7), 903–908 (1977). [CrossRef]
  11. T. Satoh, N. Nakatsuta, K. Tsuruya, Y. Tabata, T. Tamura, Y. Ichikawa, and H. Tango, “Electrical properties of two-sided luminescence powder-distributed inorganic electroluminescence panels,” J. Mater. Sci. Mater. Electron.18(S1), 239–242 (2007). [CrossRef]
  12. M. J. Kim, D. W. Shin, J.-Y. Kim, S. H. Park, I. T. Han, and J. B. Yoo, “The production of a flexible electroluminescent device on polyethylene terephthalate films using transparent conducting carbon nanotube electrode,” Carbon47(15), 3461–3465 (2009). [CrossRef]
  13. J. Y. Kim, M. J. Bae, S. H. Park, T. Jeong, S. Song, J. Lee, I. Han, J. B. Yoo, D. Jung, and S. G. Yu, “Electroluminescence enhancement of the phosphor dispersed in a polymer matrix using the tandem structure,” Org. Electron.12(3), 529–533 (2011). [CrossRef]
  14. J. Y. Kim, H. Kim, D. Jung, and S. G. Yu, “Enhanced electroluminescence performances by controlling the position of carbon nanotubes,” J. Appl. Phys.112(10), 104515 (2012). [CrossRef]
  15. S. Shinoya, T. Koda, K. Era, and H. Fujiwara, “Nature of luminescence transitions in ZnS crystals,” J. Phys. Soc. Jpn.19(7), 1157–1167 (1964). [CrossRef]
  16. K. Manzoor, S. R. Vadera, N. Kumar, and T. R. N. Kutty, “Multicolor electroluminescent devices using doped ZnS nanocrystals,” Appl. Phys. Lett.84(2), 284–286 (2004). [CrossRef]
  17. A. G. Fischer, “Electroluminescent lines in ZnS powder particles I,” J. Electrochem. Soc.109(11), 1043–1049 (1962). [CrossRef]
  18. A. G. Fischer, “Electroluminescent lines in ZnS powder particles II,” J. Electrochem. Soc.110(7), 733–748 (1963). [CrossRef]
  19. M. I. Abdalla, A. Godin, A. Brenac, and J.-P. Noblanc, “Electrical conduction and degradation mechanisms in powder ZnS:Mn,Cu direct current electroluminescent devices,” IEEE Trans. Electron. Dev.28(6), 689–693 (1981). [CrossRef]
  20. B. H. Cumpston and K. F. Jensen, “Electromigration of aluminum cathodes in polymer-based electroluminescent devices,” Appl. Phys. Lett.69(25), 3941–3943 (1996). [CrossRef]
  21. K. Hirabayashi, H. Kozawaguchi, and B. Tsujiyama, “Study on A-C powder EL phosphor deterioration factors,” J. Electrochem. Soc.130(11), 2259–2263 (1983). [CrossRef]
  22. K. Bhattacharyya, S. M. Goodnick, and J. F. Wager, “Monte Carlo simulation of electron transport in alternating-current thin-film electroluminescent devices,” J. Appl. Phys.73(7), 3390–3395 (1993). [CrossRef]
  23. E. Bringuier, “Impact excitation in ZnS-type electroluminescence,” J. Appl. Phys.70(8), 4505–4512 (1991). [CrossRef]
  24. D. J. Bergman, “The dielectric constant of a composite material-A problem in classical physics,” Phys. Rep.43(9), 377–407 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited