OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 9 — Sep. 1, 2014
  • pp: 1848–1855

Effects of polarization field distribution on photoelectric properties of InGaN light-emitting diodes

Suihu Dang, Chunxia Li, Pei Sun, Wei Jia, Tianbao Li, and Bingshe Xu  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 9, pp. 1848-1855 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1944 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Effects of the polarization field distribution in the quantum well layer of InGaN light-emitting diodes (LEDs) on their photoelectric properties are numerically studied. Specifically, the polarization and built-in electricfield distributions, energy band diagrams, carrier concentrations, radiative recombination rate, carrier current density, electroluminescence (EL) spectra, and internal quantum efficiency (IQE) are investigated. The simulation results suggest that the triangular polarization field distribution contributes to uniform carrier distribution in the quantum wells, which inhibits electron current leakage and enhances radiative recombination. In addition, the effects of the polarization field on InGaN multiple quantum wells (MQWs) are effectively suppressed by implementation of triangular MQWs, which leads to minimization of the resulting efficiency droop. LEDs incorporated with triangular MQWs with gallium face-oriented inclination band profiles exhibit a 128% improvement in EL intensity at 20 mA and a 9% reduction in droop at 100 mA in comparison to the conventional square-MQW LEDs.

© 2014 Optical Society of America

OCIS Codes
(040.4200) Detectors : Multiple quantum well
(230.3670) Optical devices : Light-emitting diodes
(270.0270) Quantum optics : Quantum optics

ToC Category:

Original Manuscript: June 5, 2014
Revised Manuscript: July 16, 2014
Manuscript Accepted: July 22, 2014
Published: August 12, 2014

Suihu Dang, Chunxia Li, Pei Sun, Wei Jia, Tianbao Li, and Bingshe Xu, "Effects of polarization field distribution on photoelectric properties of InGaN light-emitting diodes," Opt. Mater. Express 4, 1848-1855 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Technol.3(2), 160–175 (2007). [CrossRef]
  2. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005). [CrossRef] [PubMed]
  3. F. Steranka, J. Bhat, D. Collins, L. Cook, M. Craford, R. Fletcher, N. Gardner, P. Grillot, W. Goetz, M. Keuper, R. Khare, A. Kim, M. Krames, G. Harbers, M. Ludowise, P. S. Martin, M. Misra, G. Mueller, R. Mueller-Mach, S. Rudaz, Y.-C. Shen, D. Steigerwald, S. Stockman, S. Subramanya, T. Trottier, and J. J. Wierer, “High power LEDs–Technology status and market applications,” Phys. Status Solidi194(2), 380–388 (2002). [CrossRef]
  4. Y. Aoyama and T. Yachi, “An LED module array system designed for streetlight use,” in Energy 2030 Conference, 2008. ENERGY 2008. IEEE(IEEE, 2008), pp. 1–5.
  5. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron.8(2), 310–320 (2002). [CrossRef]
  6. H. C. Matthijs, H. Balke, U. M. van Hes, B. M. Kroon, L. R. Mur, and R. A. Binot, “Application of light-emitting diodes in bioreactors: flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa),” Biotechnol. Bioeng.50(1), 98–107 (1996). [CrossRef] [PubMed]
  7. G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, “Efficiency droop in InGaN/GaN blue light-emitting diodes: physical mechanisms and remedies,” J. Appl. Phys.114(7), 071101 (2013). [CrossRef]
  8. E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett.98(16), 161107 (2011). [CrossRef]
  9. K. J. Vampola, M. Iza, S. Keller, S. P. DenBaars, and S. Nakamura, “Measurement of electron overflow in 450 nm InGaN light-emitting diode structures,” Appl. Phys. Lett.94(6), 061116 (2009). [CrossRef]
  10. C. Wang, C. Ke, C. Lee, S. Chang, W. Chang, J. Li, Z. Li, H. Yang, H. Kuo, T. Lu, and S. C. Wang, “Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer,” Appl. Phys. Lett.97(26), 261103 (2010). [CrossRef]
  11. C. Wang, S. Chang, P. Ku, J. Li, Y. Lan, C. Lin, H. Yang, H. Kuo, T. Lu, S. Wang, and C. Y. Chang, “Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett.99(17), 171106 (2011). [CrossRef]
  12. K. T. Delaney, P. Rinke, and C. G. Van de Walle, “Auger recombination rates in nitrides from first principles,” Appl. Phys. Lett.94(19), 191109 (2009). [CrossRef]
  13. F. Bertazzi, M. Goano, and E. Bellotti, “A numerical study of Auger recombination in bulk InGaN,” Appl. Phys. Lett.97(23), 231118 (2010). [CrossRef]
  14. J. Zhang, J. Yang, G. Simin, M. Shatalov, M. A. Khan, M. Shur, and R. Gaska, “Enhanced luminescence in InGaN multiple quantum wells with quaternary AlInGaN barriers,” Appl. Phys. Lett.77(17), 2668–2670 (2000). [CrossRef]
  15. S. Choi, H. J. Kim, S.-S. Kim, J. Liu, J. Kim, J.-H. Ryou, R. D. Dupuis, A. M. Fischer, and F. A. Ponce, “Improvement of peak quantum efficiency and efficiency droop in III-nitride visible light-emitting diodes with an InAlN electron-blocking layer,” Appl. Phys. Lett.96(22), 221105 (2010). [CrossRef]
  16. Y. Ji, W. Liu, T. Erdem, R. Chen, S. T. Tan, Z.-H. Zhang, Z. Ju, X. Zhang, H. Sun, and X. W. Sun, “Comparative study of field-dependent carrier dynamics and emission kinetics of InGaN/GaN light-emitting diodes grown on (112¯ 2) semipolar versus (0001) polar planes,” Appl. Phys. Lett.104(14), 143506 (2014). [CrossRef]
  17. J. Huang, X. Dong, X. Luo, D. Li, X. Liu, Z. Xu, and W. Ge, “Growth temperature effect on the optical and material properties of Al xInyGa1− x− y N epilayers grown by MOCVD,” J. Cryst. Growth247(1-2), 84–90 (2003). [CrossRef]
  18. M. Craven, S. Lim, F. Wu, J. Speck, and S. DenBaars, “Structural characterization of nonpolar (112¯ 0) a-plane GaN thin films grown on (11¯ 02) r-plane sapphire,” Appl. Phys. Lett.81(3), 469–471 (2002). [CrossRef]
  19. B.-C. Lin, K.-J. Chen, C.-H. Wang, C.-H. Chiu, Y.-P. Lan, C.-C. Lin, P.-T. Lee, M.-H. Shih, Y.-K. Kuo, and H.-C. Kuo, “Hole injection and electron overflow improvement in InGaN/GaN light-emitting diodes by a tapered AlGaN electron blocking layer,” Opt. Express22(1), 463–469 (2014). [CrossRef] [PubMed]
  20. R. Choi, Y. Hahn, H. Shim, M. Han, E. Suh, and H. Lee, “Efficient blue light-emitting diodes with InGaN/GaN triangular shaped multiple quantum wells,” Appl. Phys. Lett.82(17), 2764–2766 (2003). [CrossRef]
  21. L. Zhang, R. R. Lieten, M. Latkowska, M. Baranowski, R. Kudrawiec, K. Cheng, H. Liang, and G. Borghs, “Design and Optical Characterization of Novel InGaN/GaN Multiple Quantum Well Structures by Metal Organic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys.52(8S), 08JL10 (2013). [CrossRef]
  22. S. Huang, Z. Chen, Y. Xian, B. Fan, Z. Zheng, Z. Wu, H. Jiang, and G. Wang, “Emission enhancement in GaN-based light emitting diodes with shallow triangular quantum wells,” Appl. Phys. Lett.101(4), 041116 (2012). [CrossRef]
  23. L.-H. Zhu, Q.-H. Zheng, and B.-L. Liu, “Performance improvement of InGaN/GaN light-emitting diodes with triangular-shaped multiple quantum wells,” Semicond. Sci. Technol.24(12), 125003 (2009). [CrossRef]
  24. C.-Y. Chang, H. Li, and T.-C. Lu, “High efficiency InGaN/GaN light emitting diodes with asymmetric triangular multiple quantum wells,” Appl. Phys. Lett.104(9), 091111 (2014). [CrossRef]
  25. T.-J. Yang, J. S. Speck, and Y.-R. Wu, “Influence of nanoscale indium fluctuation in the InGaN quantum-well LED to the efficiency droop with a fully 3D simulation model,” in SPIE OPTO(International Society for Optics and Photonics, 2014), pp. 89861I–89861I–89868.
  26. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]
  27. F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B56(16), R10024 (1997). [CrossRef]
  28. I. Vurgaftman, J. Meyer, and L. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys.89(11), 5815–5875 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited