OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 9 — Sep. 1, 2014
  • pp: 1856–1865

Temperature effect on colloidal PbSe quantum dot-filled liquid-core optical fiber

Hua Wu, Yu Zhang, Long Yan, Yongheng Jiang, Tieqiang Zhang, Yi Feng, Hairong Chu, Yiding Wang, Jun Zhao, and William W. Yu  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 9, pp. 1856-1865 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1261 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optical property variation induced by temperature change for PbSe quantum dot (QD)-filled hollow core fiber was investigated as a function of particle size, waveguide length, and doping concentration. The temperature coefficients of emission peak and intensity in QD-filled fiber were obviously size-dependent. The fiber filled with 4.5 nm PbSe QDs had better temperature stability in emission wavelength. The mechanism of the output loss in fiber was established, based on the thermal quenching of QD luminescence and the guided mode leakage arising from the temperature dependent refractive indexes of the fiber core and the cladding.

© 2014 Optical Society of America

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2310) Fiber optics and optical communications : Fiber optics
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: July 14, 2014
Revised Manuscript: August 2, 2014
Manuscript Accepted: August 2, 2014
Published: August 13, 2014

Hua Wu, Yu Zhang, Long Yan, Yongheng Jiang, Tieqiang Zhang, Yi Feng, Hairong Chu, Yiding Wang, Jun Zhao, and William W. Yu, "Temperature effect on colloidal PbSe quantum dot-filled liquid-core optical fiber," Opt. Mater. Express 4, 1856-1865 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. P. Alivisatos, “Perspectives on the physical chemistry of semiconductor nanocrystals,” J. Phys. Chem. B100(31), 13226–13239 (1996).
  2. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science271(5251), 933–937 (1996). [CrossRef]
  3. W. W. Yu, Y. A. Wang, and X. Peng, “Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals,” Chem. Mater.15(22), 4300–4308 (2003). [CrossRef]
  4. K. R. Choudhury, Y. Sahoo, T. Y. Ohulchanskyy, and P. N. Prasad, “Efficient photoconductive devices at infrared wavelengths using quantum dot-polymer nanocomposites,” Appl. Phys. Lett.87(7), 073110 (2005). [CrossRef]
  5. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater.15(14), 2854–2860 (2003). [CrossRef]
  6. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals: correction,” Chem. Mater.16(3), 560 (2004). [CrossRef]
  7. W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating Solvents: Tunable reactivity of monomers,” Angew. Chem. Int. Ed. Engl.41(13), 2368–2371 (2002). [CrossRef] [PubMed]
  8. C. Cheng, “A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise,” J. Lightwave Technol.26(11), 1404–1410 (2008). [CrossRef]
  9. A. R. Bahrampour, H. Rooholamini, L. Rahimi, and A. A. Askari, “An inhomogeneous theoretical model for analysis of PbSe quantum-dot-doped fiber amplifier,” Opt. Commun.282(22), 4449–4454 (2009). [CrossRef]
  10. C. Cheng, H. Jiang, D. Ma, and X. Cheng, “An optical fiber glass containing PbSe quantum dots,” Opt. Commun.284(19), 4491–4495 (2011). [CrossRef]
  11. G. Springholz, T. Schwarzl, W. Heiss, G. Bauer, M. Aigle, H. Pascher, and I. Vavra, “Midinfrared surface-emitting PbSe/PbEuTe quantum-dot lasers,” Appl. Phys. Lett.79(9), 1225–1227 (2001). [CrossRef]
  12. D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett.73(18), 2564–2566 (1998). [CrossRef]
  13. C. Meng, Y. Xiao, P. Wang, L. Zhang, Y. Liu, and L. Tong, “Quantum-dot-doped polymer nanofibers for optical sensing,” Adv. Mater.23(33), 3770–3774 (2011). [PubMed]
  14. P. Jorge, M. Martins, T. Trindade, J. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors (Basel Switzerland)7(12), 3489–3534 (2007). [CrossRef]
  15. K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000). [CrossRef]
  16. S. M. Reda, “Synthesis and optical properties of CdS quantum dots embedded in silica matrix thin films and their applications as luminescent solar concentrators,” Acta Mater.56(2), 259–264 (2008). [CrossRef]
  17. Q. Dai, Y. Wang, X. Li, Y. Zhang, D. J. Pellegrino, M. Zhao, B. Zou, J. Seo, Y. Wang, and W. W. Yu, “Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals,” ACS Nano3(6), 1518–1524 (2009). [CrossRef] [PubMed]
  18. F. W. Wise, “Lead salt quantum dots: the limit of strong quantum confinement,” Acc. Chem. Res.33(11), 773–780 (2000). [CrossRef] [PubMed]
  19. H. Du, C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, “Optical properties of colloidal PbSe nanocrystals,” Nano Lett.2(11), 1321–1324 (2002). [CrossRef]
  20. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science290(5490), 314–317 (2000). [CrossRef] [PubMed]
  21. J. S. Steckel, S. Coe-Sullivan, V. Bulović, and M. G. Bawendi, “1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device,” Adv. Mater.15(21), 1862–1866 (2003). [CrossRef]
  22. A. Hreibi, F. Gérôme, J.-L. Auguste, Y. Zhang, W. W. Yu, and J.-M. Blondy, “Semiconductor-doped liquid-core optical fiber,” Opt. Lett.36(9), 1695–1697 (2011). [CrossRef] [PubMed]
  23. L. Zhang, Y. Zhang, H. Wu, T. Zhang, P. Gu, H. Chu, T. Cui, Y. Wang, H. Zhang, J. Zhao, and W. W. Yu, “Multiparameter-dependent spontaneous emission in PbSe quantum dot-doped liquid-core multi-mode fiber,” J. Nanopart. Res.15(10), 1–10 (2013). [CrossRef]
  24. A. Hartog, “A distributed temperature sensor based on liquid-core optical fibers,” J. Lightwave Technol.1(3), 498–509 (1983). [CrossRef]
  25. G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” Appl. Opt.18(9), 1445–1448 (1979). [CrossRef] [PubMed]
  26. P. Gu, Y. Zhang, Y. Feng, T. Zhang, H. Chu, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Real-time and on-chip surface temperature sensing of GaN LED chips using PbSe quantum dots,” Nanoscale5(21), 10481–10486 (2013). [CrossRef] [PubMed]
  27. W. Liu, Y. Zhang, W. Zhai, Y. Wang, T. Zhang, P. Gu, H. Chu, H. Zhang, T. Cui, Y. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C117(38), 19288–19294 (2013).
  28. S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang, “Single quantum dots as local temperature markers,” Nano Lett.7(10), 3102–3105 (2007). [CrossRef] [PubMed]
  29. Q. Dai, Y. Zhang, Y. Wang, M. Z. Hu, B. Zou, Y. Wang, and W. W. Yu, “Size-dependent temperature effects on PbSe nanocrystals,” Langmuir26(13), 11435–11440 (2010). [CrossRef] [PubMed]
  30. A. Narayanaswamy, L. F. Feiner, and P. J. van der Zaag, “Temperature dependence of the photoluminescence of InP/ZnS quantum dots,” J. Phys. Chem. C112(17), 6775–6780 (2008). [CrossRef]
  31. W. W. Yu, J. C. Falkner, B. S. Shih, and V. L. Colvin, “Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent,” Chem. Mater.16(17), 3318–3322 (2004). [CrossRef]
  32. Y. Zhang, Q. Dai, X. Li, Q. Cui, Z. Gu, B. Zou, Y. Wang, and W. W. Yu, “Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission,” Nanoscale Res. Lett.5(8), 1279–1283 (2010). [CrossRef] [PubMed]
  33. Y. Zhang, Q. Dai, X. Li, B. Zou, Y. Wang, and W. Yu, “Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals,” J. Nanopart. Res.13(9), 3721–3729 (2011). [CrossRef]
  34. Y. Zhang, Q. Dai, X. Li, J. Liang, V. L. Colvin, Y. Wang, and W. W. Yu, “PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence,” Langmuir27(15), 9583–9587 (2011). [CrossRef] [PubMed]
  35. O. E. Semonin, J. C. Johnson, J. M. Luther, A. G. Midgett, A. J. Nozik, and M. C. Beard, “Absolute photoluminescence quantum yields of IR-26 Dye, PbS, and PbSe quantum dots,” J. Phys. Chem. Lett.1(16), 2445–2450 (2010).
  36. G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton−phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C111(16), 5846–5849 (2007). [CrossRef]
  37. K. A. Abel, H. Qiao, J. F. Young, and F. C. J. M. van Veggel, “Four-fold enhancement of the activation energy for nonradiative decay of excitons in PbSe/CdSe core/shell versus PbSe colloidal quantum dots,” J. Phys. Chem. Lett.1(15), 2334–2338 (2010).
  38. L. Zhang, Y. Zhang, S. V. Kershaw, Y. Zhao, Y. Wang, Y. Jiang, T. Zhang, W. W. Yu, P. Gu, Y. Wang, H. Zhang, and A. L. Rogach, “Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths,” Nanotechnology25(10), 105704 (2014). [CrossRef] [PubMed]
  39. S. Rieger, T. Hellwig, T. Walbaum, and C. Fallnich, “Optical repetition rate stabilization of a mode-locked all-fiber laser,” Opt. Express21(4), 4889–4895 (2013). [CrossRef] [PubMed]
  40. H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express19(24), 24061–24066 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited