OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 9 — Sep. 1, 2014
  • pp: 1895–1902

Nanothermoforming of hierarchical optical components utilizing shape memory polymers as active molds

Norbert Schneider, Claudia Zeiger, Alexander Kolew, Marc Schneider, Juerg Leuthold, Hendrik Hölscher, and Matthias Worgull  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 9, pp. 1895-1902 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2214 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We utilize shape memory polymers as active mold inserts for the thermoforming of complex, hierarchical nano- and microstructured optical components with undercuts on large scales. Our approach combines nanoimprint/hot embossing and thermoforming with the unique features of shape memory polymers. As examples for this nano- and microthermo-forming process, we demonstrate the fabrication of hierarchical photonic structures inspired by the blue Morpho butterfly as well as diffractive optical elements with nm- and μm-size structures.

© 2014 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(160.1245) Materials : Artificially engineered materials
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Artificially Engineered Structures

Original Manuscript: May 27, 2014
Revised Manuscript: July 21, 2014
Manuscript Accepted: July 21, 2014
Published: August 20, 2014

Norbert Schneider, Claudia Zeiger, Alexander Kolew, Marc Schneider, Juerg Leuthold, Hendrik Hölscher, and Matthias Worgull, "Nanothermoforming of hierarchical optical components utilizing shape memory polymers as active molds," Opt. Mater. Express 4, 1895-1902 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour26, 79–84 (1967).
  2. A. R. Parker, “515 million year of structural colors,” J. Opt. A: Pure Appl. Opt.2, R15–R28 (2000). [CrossRef]
  3. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424, 852–855 (2003). [CrossRef] [PubMed]
  4. R. A. Potyrailo, H. Ghiradella, A. Vertiatchick, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapor response,” Nature Photonics1, 123–128 (2007). [CrossRef]
  5. L. Biro and J. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser & Photon. Rev.5, 27–51 (2011). [CrossRef]
  6. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B273, 661–667 (2006). [CrossRef] [PubMed]
  7. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999). [CrossRef]
  8. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology2, 770–774 (2007). [CrossRef]
  9. A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nature Photonics6, 195–200 (2012). [CrossRef]
  10. S. J. Abbott and P. H. Gaskell, “Mass production of bio-inspired structured surfaces,” Proc. IMechE Vol. 221C221, 1181–1191 (2007).
  11. M. Worgull, Hot Embossing - Theory and Technology of Microreplication (William Andrew, 2009), 1st ed.
  12. E. Brousseau, S. Dimov, and D. Pham, “Some recent advances in multi-material micro- and nano-manufacturing,” Int. J. Adv. Manuf. Technol.47, 161–180 (2010). [CrossRef]
  13. M. Aryal, D.-H. Ko, J. R. Tumbleston, A. Gadisa, E. T. Samulski, and R. Lopez, “Large area nanofabrication of butterfly wing’s three dimensional ultrastructures,” J. Vac. Sci. Technol. B30, 061802 (2012). [CrossRef]
  14. N. C. Lee, Understanding Blow Molding (Hanser-Gardner Publ., 2007), 2nd ed.
  15. M. Heilig, S. Giselbrecht, A. Guber, and M. Worgull, “Microthermoforming of nanostructured polymer films: a new bonding method for the integration of nanostructures in 3-dimensional cavities,” Microsys. Technol.16, 1221–1231 (2010). [CrossRef]
  16. M. Heilig, M. Schneider, H. Dinglreiter, and M. Worgull, “Technology of microthermoforming of complex three-dimensional parts with multiscale features,” Microsys. Technol.17, 593–600 (2011). [CrossRef]
  17. R. Truckenmueller, Z. Rummler, T. Schaller, and W. K. Schomburg, “Low-cost thermoforming of micro fluidic analysis chips,” J. Micromech. Microeng.12, 375 (2002). [CrossRef]
  18. S. Giselbrecht, T. Gietzelt, E. Gottwald, C. Trautmann, R. Truckenmüller, K. Weibezahn, and A. Welle, “3d tissue culture substrates produced by microthermoforming of pre-processed polymer films,” Biomed. Microdevices8, 191–199 (2006). [CrossRef] [PubMed]
  19. A. Lendlein and R. Langer, “Biodegradable, elastic shape-memory polymers for potential biomedical applications,” Science296, 1673–1676 (2002). [CrossRef] [PubMed]
  20. C. Liu, H. Qin, and P. T. Mather, “Review of progress in shape-memory polymers,” J. Mat. Chem.17, 1543–1558 (2007). [CrossRef]
  21. T. Xie, “Tunable polymer multi-shape memory effect,” Nature464, 267–270 (2010). [CrossRef] [PubMed]
  22. M. Behl, M. Y. Razzaq, and A. Lendlein, “Multifunctional Shape-Memory Polymers,” Adv. Mater.22, 3388–3410 (2010). [CrossRef] [PubMed]
  23. H. Xu, C. Yu, S. Wang, V. Malyarchuk, T. Xie, and J. A. Rogers, “Deformable, Programmable, and Shape-Memorizing Micro-Optics,” Adv. Func. Mat.23, 3299–3306 (2013). [CrossRef]
  24. A. Espinha, M. C. Serrano, Á. Blanco, and C. López, “Thermoresponsive Shape-Memory Photonic Nanostructures,” Adv. Optical Mater. pp. 516–521 (2014). [CrossRef]
  25. E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic molding (LIGA process),” Microelectron. Eng.4, 35–56 (1986). [CrossRef]
  26. L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater.19, 495–513 (2007). [CrossRef]
  27. H. Schift and A. Kristensen, Handbook of Nanotechnology (Springer Verlag, Berlin, 2010), chap. 9. Nanoimprint lithography - Patterning of Resists Using Molding, pp. 271–312, 3rd ed. [CrossRef]
  28. H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev.10, 63–73 (2003). [CrossRef]
  29. A. Waddie, M. Taghizadeh, J. Mohr, V. Piotter, C. Mehne, A. Stuck, E. Stijns, and H. Thienpont, Design, fabrication and replication of micro-optical components for educational purposes within the Network of Excellence in Micro-Optics (NEMO), SPIE Proceedings Vol. 6185, doi: (2006). [CrossRef]
  30. C. Stuart and Y. Chen, “Roll in and roll out: A path to high-throughput nanoimprint lithography,” ACS Nano3, 2062–2064 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited