OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David Hagan
  • Vol. 4, Iss. 9 — Sep. 1, 2014
  • pp: 1932–1942

Extinction properties of ultrapure water down to deep ultraviolet wavelengths

Lars Kröckel and Markus A. Schmidt  »View Author Affiliations

Optical Materials Express, Vol. 4, Issue 9, pp. 1932-1942 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (834 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the optical extinction properties of the clearest ultrapure water measured so far within the wavelength interval between 181 nm and 340 nm (TOC level: 2.6 ± 0.7 ppb, specific conductivity: 0.055 µS cm−1). Our results extend the state-of-the-art extinction spectrum of ultrapure water by 15 nm towards shorter wavelengths and accurately resolve the ultraviolet extinction edge, allowing redefining a straightforward fitting function of the ultraviolet extinction of water (Urbach constant: 0.337 at 25 °C). The spectral distribution of our calculated Rayleigh scattering contribution shows a significantly better agreement with the experimental data than those reported in literature. The extinction temperature coefficient was determined in the range from 10 to 30 °C as a function of wavelength, showing significantly smaller values than those previously reported and being useful for noninvasively determining the temperature of ultrapure water samples.

© 2014 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(300.1030) Spectroscopy : Absorption
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

ToC Category:
Optical properties

Original Manuscript: July 22, 2014
Revised Manuscript: August 19, 2014
Manuscript Accepted: August 19, 2014
Published: August 25, 2014

Virtual Issues
October 27, 2014 Spotlight on Optics

Lars Kröckel and Markus A. Schmidt, "Extinction properties of ultrapure water down to deep ultraviolet wavelengths," Opt. Mater. Express 4, 1932-1942 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. I. Quickenden and J. A. Irvin, “The ultraviolet absorption spectrum of liquid water,” J. Chem. Phys.72(8), 4416–4428 (1980). [CrossRef]
  2. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-microm wavelength region,” Appl. Opt.12(3), 555–563 (1973). [CrossRef] [PubMed]
  3. D. J. David Segelstein, The complex refractive index of water, master thesis, University of Missouri-Kansas City (1981). https://mospace.umsystem.edu/xmlui/handle/10355/11599 .
  4. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200-800 nm),” Appl. Opt.20(2), 177–184 (1981). [CrossRef] [PubMed]
  5. W. M. Irvine and J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus8(1–3), 324–360 (1968). [CrossRef]
  6. S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: A revised compilation,” J. Geophys. Res.113(D14), D14220 (2008). [CrossRef]
  7. T. W. Marin, K. Takahashi, and D. M. Bartels, “Temperature and density dependence of the light and heavy water ultraviolet absorption edge,” J. Chem. Phys.125(10), 104314 (2006). [CrossRef] [PubMed]
  8. F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev.92(5), 1324 (1953). [CrossRef]
  9. R. Onaka and T. Takahashi, “Vacuum UV absorption spectra of liquid water and ice,” J. Phys. Soc. Jpn.24(3), 548–550 (1968). [CrossRef]
  10. F. Williams, S. P. Varma, and S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chem. Phys.64(4), 1549–1554 (1976).
  11. D. P. Stevenson, “On the monomer concentration in liquid water,” J. Phys. Chem.69(7), 2145–2152 (1965). [CrossRef]
  12. J. L. Weeks, G. M. A. C. Meaburn, and S. Gordon, “Absorption coefficients of liquid water and aqueous solutions in the far ultraviolet,” Radiat. Res.19(3), 559–567 (1963). [CrossRef] [PubMed]
  13. J. Barrett and A. L. Mansell, “Ultra-violet absorption spectra of the molecules H2O, HDO and D2O,” Nature187(4732), 138 (1960). [CrossRef]
  14. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt.36(33), 8710–8723 (1997). [CrossRef] [PubMed]
  15. F. M. Sogandares and E. S. Fry, “Absorption spectrum (340-640 nm) of pure water. I. Photothermal measurements,” Appl. Opt.36(33), 8699–8709 (1997). [CrossRef] [PubMed]
  16. M. Jonasz and G. R. Fournier, Light Scattering by Particles in Water - Theoretical and Experimental Foundations (Academic Press, 2007), Chap. 2.
  17. E. S. Fry, G. W. Kattawar, and R. M. Pope, “Integrating cavity absorption meter,” Appl. Opt.31(12), 2055–2065 (1992). [CrossRef] [PubMed]
  18. L. J. Heidt and A. M. Johnson, “Optical study of the hydrates of molecular oxygen in water,” J. Am. Chem. Soc.79(21), 5587–5593 (1957). [CrossRef]
  19. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am.55(10), 1205–1209 (1965). [CrossRef]
  20. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt.46(18), 3811–3820 (2007). [CrossRef] [PubMed]
  21. K. P. Birch and M. J. Downs, “Correction to the updated Edlén equation for the refractive index of air,” Metrologia31(4), 315–316 (1994). [CrossRef]
  22. M. Halman and I. Platzner, “Tempeature dependence of absorption of liquid water in the far-ultraviolet region,” J. Phys. Chem.70(2), 580–581 (1966). [CrossRef]
  23. A. Bernas, C. Ferradini, and J.-P. Jay-Gerin, “On the electronic structure of liquid water: facts and reflections,” Chem. Phys.222(2-3), 151–160 (1997). [CrossRef]
  24. L. Weiss, A. Tazibt, A. Tidu, and M. Aillerie, “Water density and polarizability deduced from the refractive index determined by interferometric measurements up to 250 MPa,” J. Chem. Phys.136(12), 124201 (2012). [CrossRef] [PubMed]
  25. C. V. Raman and K. Seshagiri Rao, “On the molecular scattering and extinction of light in liquids and the determination of the Avogadro constant,” Philos. Mag. S. 6(45), 625-640 (1923).
  26. A. Bray, R. Chapman, and T. Plakhotnik, “Accurate measurements of the Raman scattering coefficient and the depolarization ratio in liquid water,” Appl. Opt.52(11), 2503–2510 (2013). [CrossRef] [PubMed]
  27. J. P. Kratohvil, M. Kerker, and L. E. Oppenheimer, “Light scattering by pure water,” J. Chem. Phys.43(3), 914 (1965). [CrossRef]
  28. G. S. Kell, “Density, thermal expansity, and compressibility of liquid water from 0° to 150°C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale,” J. Chem. Eng. Data20(1), 97–105 (1975). [CrossRef]
  29. H. H. Perkampus, UV-VIS Atlas of Organic Compounds, 2nd ed. (Wiley-VCH, 1992).
  30. W. S. Pegau and J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr.38(1), 188–192 (1993). [CrossRef]
  31. J. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE2258, 174–183 (1994). [CrossRef]
  32. V. S. Langford, A. J. McKinley, and T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A105(39), 8916–8921 (2001). [CrossRef]
  33. L. Kröckel, G. Schwotzer, H. Lehmann, and T. Wieduwilt, “Spectral optical monitoring of nitrate in inland and seawater with miniaturized optical components,” Water Res.45(3), 1423–1431 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited