OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 2 — Jun. 1, 2011
  • pp: 173–178
« Show journal navigation

Multi-zone light emission in a one-dimensional ZnO waveguide with hybrid structures

Qi Zhang, Junjie Qi, Jing Zhao, Xin Li, and Yue Zhang  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 2, pp. 173-178 (2011)
http://dx.doi.org/10.1364/OME.1.000173


View Full Text Article

Acrobat PDF (944 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We observed multi-zone light emission in a one-dimensional waveguide based on an individual pearl-like ZnO nanowire with hybrid structures, which was obtained through an electrical breakdown process. E2 (high) mode in Raman spectra revealed a blueshift while a redshift of UV near band edge emission was observed by focusing laser on the polycrystalline parts at room temperature. Strong light emission was observed from the polycrystalline parts except the end in the pearl-like ZnO nanowires as compared with columnar ones, which is associated with the light propagation in the waveguide determined by the different dielectric constants between single crystal and polycrystal.

© 2011 OSA

1. Introduction

In this letter, we would pay a close attention to the propagation of light within pearl-like nanowires with hybrid structures. Pearl-like ZnO NW was obtained through an electrical breakdown method by increasing longitudinal bias beyond the toleration of individual ZnO NWs and polycrystalline structure was demonstrated in the pearl part. Room temperature Raman and photoluminescence (PL) were performed to compare the physical properties of different structure. Multi zone light emission was observed from the pearl parts and a possible mechanism based on finite element analysis was proposed.

2. Experimental sections

Our experiments are based on ZnO NWs synthesized through a conventional chemical vapor deposition method [15

15. Y. H. Huang, Y. Zhang, X. M. Zhang, J. Liu, J. He, and Q. L. Liao, “Structures, growth mechanisms and properties of ZnO nanomaterials fabricated by zinc powder evaporation,” Nanoscience 11, 265–275 (2006).

]. After cooling down to room temperature, samples were dispersed into ethanol and then dripped on Si substrate covered with a 300 nm thick SiO2. Pearl-like ZnO NWs were realized inside a scanning electron microscope (JEOL 6490) equipped with a nanomanipulator module (Zyvex S100). The crystal structure was certified by high-resolution transmission electron microscope (HRTEM; JEM 2100). We conducted selected-area Raman spectra experiments (He-Ne laser 634 nm) and selected-area PL spectra experiments (He-Cd laser 325 nm) at room temperature in the atmosphere by employing Jobin-Yvon HR800, by focusing laser on the pearl or on the pole. Electromagnetic field distributions in the two-dimensional cross section were simulated by finite element method.

3. Results and discussion

Pearl-like ZnO NWs were achieved through an electrical breakdown method described as follows. For an individual ZnO NW, two terminal I-V measurements were conducted by applying a longitudinal bias. When the bias reached the threshold value, pearl-like ZnO NW was obtained with a decline of current in the I-V curve, as illustrated in Fig. 1
Fig. 1 I-V curve recorded during the nanodamage process, insert SEM and HRTEM images compare the morphology and crystal structures before and after the failure process.
. The SEM images in the figure compared the morphologies of the samples before (left) and after (right) the failure process. Polycrystalline ZnO was demonstrated in the pearl parts while the pole part maintained single crystal structure, as illustrated in HRTEM images. A more detail characterization of crystal structure was given in [14

14. Q. Zhang, J. J. Qi, Y. Yang, Y. H. Huang, X. Li, and Y. Zhang, “Electrical breakdown of ZnO nanowires in metal-semiconductor-metal structure,” Appl. Phys. Lett. 96(25), 253112 (2010). [CrossRef]

].

To explore the propagation of light within pearl-like nanowires with hybrid structures, we introduce a finite element analysis on the electromagnetic field distribution in the two-dimensional cross section of single crystal and polycrystalline ZnO waveguides, respectively, as illustrated in Fig. 4
Fig. 4 Electromagnetic field distributions in the two-dimensional cross section of single crystalline and polycrystalline ZnO waveguides.
. The confinement of light in components with nanoscale cross-sections significantly enhances the magnitude of the optical experienced by these components. Optical forces can be divided into two major categories: radiation pressure and transverse gradient forces. Radiation pressure effects can be understood as momentum exchange between photons and matter, so the force acts along the light propagation direction. The gradient force acts transversely to the propagation direction of the light and enables, for example, optical tweezing in free-space optics [29

29. J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009). [CrossRef] [PubMed]

]. Because of the isotropic in the polycrystalline, the electromagnetic field reveals a concentric circle distribution, meaning the light could propagate in all directions (for the two-dimensional cross section, the light could propagate along radial directions). While in the single crystalline, the different dielectric constants along c axis and a axis for hexagonal ZnO single crystal lead to the confinement of light along the c axis [11

11. R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009). [CrossRef]

,12

12. J. Lee and M. Yoon, “Synthesis of visible light-sensitive ZnO nanostructures: subwavelength waveguides,” J. Phys. Chem. C 113(27), 11952–11958 (2009). [CrossRef]

]. For the nanowire hybrid structures, due to the light propagation in all direction in the polycrystalline parts, we could observe the multi-zone emission in the pearl-like NWs in Fig. 3(b). In addition, due to the biosafety and biocompatibility of ZnO materials [2

2. Y. Lei, X. Q. Yan, N. Luo, Y. Song, and Y. Zhang, “ZnO nanotetrapod network as the adsorption layer for the improvement of glucose detection via multiterminal electron-exchange,” Colloids Surf. A Physicochem. Eng. Asp. 361(1-3), 169–173 (2010). [CrossRef]

], we consider that in their present form these nanowire hybrid structures could be exploited as optical nanobarcodes, which could be useful as labels for imaging [30

30. M. S. Gudiksen, L. J. Lauhon, J. F. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002). [CrossRef] [PubMed]

]. Moreover, III-Nitride semiconductors, particularly InGaN and AlGaN based alloys, have the similar wurtzite crystal structure as ZnO [31

31. H. P. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010). [CrossRef]

,32

32. J. Zhang, H. P. Zhao, and N. Tansu, “Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers,” Appl. Phys. Lett. 97(11), 111105 (2010). [CrossRef]

]. Therefore, the similar concept may be applicable in InGaN and AlGaN based materials, which need a further work.

4. Conclusion

Acknowledgments

The authors are thankful for the support provided by the National Basic Research Program of China (Grant No. 2007CB936201), the Funds for International Cooperation and Exchange (Grant No. 50620120439, 2006DFB51000), and the National Natural Science Foundation of China (NSFC) (No. 50872008).

References and links

1.

A. Manekkathodi, M.-Y. Lu, C. W. Wang, and L.-J. Chen, “Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics,” Adv. Mater. (Deerfield Beach Fla.) 22(36), 4059–4063 (2010). [CrossRef] [PubMed]

2.

Y. Lei, X. Q. Yan, N. Luo, Y. Song, and Y. Zhang, “ZnO nanotetrapod network as the adsorption layer for the improvement of glucose detection via multiterminal electron-exchange,” Colloids Surf. A Physicochem. Eng. Asp. 361(1-3), 169–173 (2010). [CrossRef]

3.

Z. L. Wang and J. H. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312(5771), 242–246 (2006). [CrossRef] [PubMed]

4.

Y. Zhang, J. Q. Xu, P. C. Xu, Y. H. Zhu, X. D. Chen, and W. J. Yu, “Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance,” Nanotechnology 21(28), 285501 (2010). [CrossRef] [PubMed]

5.

Y. H. Zheng, L. R. Zheng, Y. Y. Zhan, X. Y. Lin, Q. Zheng, and K. Wei, “Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis,” Inorg. Chem. 46(17), 6980–6986 (2007). [CrossRef] [PubMed]

6.

X. M. Zhang, M. Y. Lu, Y. Zhang, L.-J. Chen, and Z. L. Wang, “Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN Thin Film,” Adv. Mater. (Deerfield Beach Fla.) 21(27), 2767–2770 (2009). [CrossRef]

7.

G. M. Ali and P. Chakrabarti, “Effect of thermal treatment on the performance of ZnO based metal-insulator-semiconductor ultraviolet photodetectors,” Appl. Phys. Lett. 97(3), 031116 (2010). [CrossRef]

8.

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007). [CrossRef] [PubMed]

9.

H. K. Liang, S. F. Yu, and H. Y. Yang, “ZnO random laser diode arrays for stable single-mode operation at high power,” Appl. Phys. Lett. 97(24), 241107 (2010). [CrossRef]

10.

H. Y. Li, B. Jiang, R. Schaller, J. F. Wu, and J. Jiao, “Antireflective photoanode made of TiO2 nanobelts and a ZnO nanowire array,” J. Phys. Chem. C 114(26), 11375–11380 (2010). [CrossRef]

11.

R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009). [CrossRef]

12.

J. Lee and M. Yoon, “Synthesis of visible light-sensitive ZnO nanostructures: subwavelength waveguides,” J. Phys. Chem. C 113(27), 11952–11958 (2009). [CrossRef]

13.

T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, “Ink-jet printing of doped polymers for organic light emitting devices,” Appl. Phys. Lett. 72(5), 519–521 (1998). [CrossRef]

14.

Q. Zhang, J. J. Qi, Y. Yang, Y. H. Huang, X. Li, and Y. Zhang, “Electrical breakdown of ZnO nanowires in metal-semiconductor-metal structure,” Appl. Phys. Lett. 96(25), 253112 (2010). [CrossRef]

15.

Y. H. Huang, Y. Zhang, X. M. Zhang, J. Liu, J. He, and Q. L. Liao, “Structures, growth mechanisms and properties of ZnO nanomaterials fabricated by zinc powder evaporation,” Nanoscience 11, 265–275 (2006).

16.

T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142(2), 570–574 (1966). [CrossRef]

17.

S.-S. Lo and D. Huang, “Morphological variation and Raman spectroscopy of ZnO hollow microspheres prepared by a chemical colloidal process,” Langmuir 26, 6762–6766 (2010).

18.

C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-order Raman effect in Wurtzite-type crystals,” Phys. Rev. 181(3), 1351–1363 (1969). [CrossRef]

19.

J. E. Smith Jr., M. H. Brodsky, B. L. Crowder, M. L. Nathan, and A. Pinczuk, “Raman spectra of amorphous si and related tetrahedrally bonded semiconductors,” Phys. Rev. Lett. 26(11), 642–646 (1971). [CrossRef]

20.

H.-J. Egelhaaf and D. Oelkrug, “Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO,” J. Cryst. Growth 161(1-4), 190–194 (1996). [CrossRef]

21.

C.-W. Chen, K.-H. Chen, C.-H. Shen, A. Ganguly, L.-C. Chen, J.-J. Wu, H.-I. Wen, and W.-F. Pong, “Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime,” Appl. Phys. Lett. 88(24), 241905 (2006). [CrossRef]

22.

Z. W. Liu, C. K. Ong, T. Yu, and Z. X. Shen, “Catalyst-free pulsed-laser-deposited ZnO nanorods and their room-temperature photoluminescence properties,” Appl. Phys. Lett. 88(5), 053110 (2006). [CrossRef]

23.

T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89(18), 182107 (2006). [CrossRef]

24.

Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003). [CrossRef]

25.

C. H. Ahn, S. K. Mohanta, N. E. Lee, and H. K. Cho, “Enhanced exciton-phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94(26), 261904 (2009). [CrossRef]

26.

X. Gu, K. Huo, G. Qian, J. Fu, and P. K. Chu, “Temperature dependent photoluminescence from ZnO nanowires and nanosheets on brass substrate,” Appl. Phys. Lett. 93(20), 203117 (2008). [CrossRef]

27.

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. (Deerfield Beach Fla.) 15(22), 1907–1911 (2003). [CrossRef]

28.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998). [CrossRef]

29.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009). [CrossRef] [PubMed]

30.

M. S. Gudiksen, L. J. Lauhon, J. F. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002). [CrossRef] [PubMed]

31.

H. P. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010). [CrossRef]

32.

J. Zhang, H. P. Zhao, and N. Tansu, “Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers,” Appl. Phys. Lett. 97(11), 111105 (2010). [CrossRef]

OCIS Codes
(160.0160) Materials : Materials
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Semiconductors

History
Original Manuscript: April 8, 2011
Revised Manuscript: April 21, 2011
Manuscript Accepted: April 22, 2011
Published: April 29, 2011

Citation
Qi Zhang, Junjie Qi, Jing Zhao, Xin Li, and Yue Zhang, "Multi-zone light emission in a one-dimensional ZnO waveguide with hybrid structures," Opt. Mater. Express 1, 173-178 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-2-173


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Manekkathodi, M.-Y. Lu, C. W. Wang, and L.-J. Chen, “Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics,” Adv. Mater. (Deerfield Beach Fla.) 22(36), 4059–4063 (2010). [CrossRef] [PubMed]
  2. Y. Lei, X. Q. Yan, N. Luo, Y. Song, and Y. Zhang, “ZnO nanotetrapod network as the adsorption layer for the improvement of glucose detection via multiterminal electron-exchange,” Colloids Surf. A Physicochem. Eng. Asp. 361(1-3), 169–173 (2010). [CrossRef]
  3. Z. L. Wang and J. H. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312(5771), 242–246 (2006). [CrossRef] [PubMed]
  4. Y. Zhang, J. Q. Xu, P. C. Xu, Y. H. Zhu, X. D. Chen, and W. J. Yu, “Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance,” Nanotechnology 21(28), 285501 (2010). [CrossRef] [PubMed]
  5. Y. H. Zheng, L. R. Zheng, Y. Y. Zhan, X. Y. Lin, Q. Zheng, and K. Wei, “Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis,” Inorg. Chem. 46(17), 6980–6986 (2007). [CrossRef] [PubMed]
  6. X. M. Zhang, M. Y. Lu, Y. Zhang, L.-J. Chen, and Z. L. Wang, “Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN Thin Film,” Adv. Mater. (Deerfield Beach Fla.) 21(27), 2767–2770 (2009). [CrossRef]
  7. G. M. Ali and P. Chakrabarti, “Effect of thermal treatment on the performance of ZnO based metal-insulator-semiconductor ultraviolet photodetectors,” Appl. Phys. Lett. 97(3), 031116 (2010). [CrossRef]
  8. T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007). [CrossRef] [PubMed]
  9. H. K. Liang, S. F. Yu, and H. Y. Yang, “ZnO random laser diode arrays for stable single-mode operation at high power,” Appl. Phys. Lett. 97(24), 241107 (2010). [CrossRef]
  10. H. Y. Li, B. Jiang, R. Schaller, J. F. Wu, and J. Jiao, “Antireflective photoanode made of TiO2 nanobelts and a ZnO nanowire array,” J. Phys. Chem. C 114(26), 11375–11380 (2010). [CrossRef]
  11. R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009). [CrossRef]
  12. J. Lee and M. Yoon, “Synthesis of visible light-sensitive ZnO nanostructures: subwavelength waveguides,” J. Phys. Chem. C 113(27), 11952–11958 (2009). [CrossRef]
  13. T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, “Ink-jet printing of doped polymers for organic light emitting devices,” Appl. Phys. Lett. 72(5), 519–521 (1998). [CrossRef]
  14. Q. Zhang, J. J. Qi, Y. Yang, Y. H. Huang, X. Li, and Y. Zhang, “Electrical breakdown of ZnO nanowires in metal-semiconductor-metal structure,” Appl. Phys. Lett. 96(25), 253112 (2010). [CrossRef]
  15. Y. H. Huang, Y. Zhang, X. M. Zhang, J. Liu, J. He, and Q. L. Liao, “Structures, growth mechanisms and properties of ZnO nanomaterials fabricated by zinc powder evaporation,” Nanoscience 11, 265–275 (2006).
  16. T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142(2), 570–574 (1966). [CrossRef]
  17. S.-S. Lo and D. Huang, “Morphological variation and Raman spectroscopy of ZnO hollow microspheres prepared by a chemical colloidal process,” Langmuir 26, 6762–6766 (2010).
  18. C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-order Raman effect in Wurtzite-type crystals,” Phys. Rev. 181(3), 1351–1363 (1969). [CrossRef]
  19. J. E. Smith, M. H. Brodsky, B. L. Crowder, M. L. Nathan, and A. Pinczuk, “Raman spectra of amorphous si and related tetrahedrally bonded semiconductors,” Phys. Rev. Lett. 26(11), 642–646 (1971). [CrossRef]
  20. H.-J. Egelhaaf and D. Oelkrug, “Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO,” J. Cryst. Growth 161(1-4), 190–194 (1996). [CrossRef]
  21. C.-W. Chen, K.-H. Chen, C.-H. Shen, A. Ganguly, L.-C. Chen, J.-J. Wu, H.-I. Wen, and W.-F. Pong, “Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime,” Appl. Phys. Lett. 88(24), 241905 (2006). [CrossRef]
  22. Z. W. Liu, C. K. Ong, T. Yu, and Z. X. Shen, “Catalyst-free pulsed-laser-deposited ZnO nanorods and their room-temperature photoluminescence properties,” Appl. Phys. Lett. 88(5), 053110 (2006). [CrossRef]
  23. T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, and A. Waag, “Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires,” Appl. Phys. Lett. 89(18), 182107 (2006). [CrossRef]
  24. Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003). [CrossRef]
  25. C. H. Ahn, S. K. Mohanta, N. E. Lee, and H. K. Cho, “Enhanced exciton-phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94(26), 261904 (2009). [CrossRef]
  26. X. Gu, K. Huo, G. Qian, J. Fu, and P. K. Chu, “Temperature dependent photoluminescence from ZnO nanowires and nanosheets on brass substrate,” Appl. Phys. Lett. 93(20), 203117 (2008). [CrossRef]
  27. H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, “ZnO nanoribbon microcavity lasers,” Adv. Mater. (Deerfield Beach Fla.) 15(22), 1907–1911 (2003). [CrossRef]
  28. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73(25), 3656–3658 (1998). [CrossRef]
  29. J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009). [CrossRef] [PubMed]
  30. M. S. Gudiksen, L. J. Lauhon, J. F. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002). [CrossRef] [PubMed]
  31. H. P. Zhao and N. Tansu, “Optical gain characteristics of staggered InGaN quantum wells lasers,” J. Appl. Phys. 107(11), 113110 (2010). [CrossRef]
  32. J. Zhang, H. P. Zhao, and N. Tansu, “Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers,” Appl. Phys. Lett. 97(11), 111105 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited