Nonlinear, dispersive, and phase-matching properties of the new chalcopyrite CdSiP_{2} [Invited] |
Optical Materials Express, Vol. 1, Issue 7, pp. 1292-1300 (2011)
http://dx.doi.org/10.1364/OME.1.001292
Acrobat PDF (1256 KB)
Abstract
We compare the nonlinear and dispersive properties of the recently discovered mid-infrared nonlinear crystal CdSiP_{2} with other chalcopyrite materials to establish its potential for super-continuum generation through a second-order nonlinear process.
© 2011 OSA
1. Introduction
1. S. G. Abrahams and J. L. Bernstein, “Luminescent piezoelectric CdSiP_{2}: Normal probability plot analysis, crystal structure, and generalized structure of the A^{II}B^{IV}C^{V}_{2} family,” J. Chem. Phys. 55(2), 796–803 (1971). [CrossRef]
5. N. A. Goryunova, L. B. Zlatkin, and K. K. Ivanov, “Optical anisotropy of A^{2}B^{4}C^{5}_{2} crystals,” J. Phys. Chem. Solids 31(11), 2557–2561 (1970). [CrossRef]
3. N. Itoh, T. Fujinaga, and T. Nakau, “Birefringence in CdSiP_{2},” Jpn. J. Appl. Phys. 17(5), 951–952 (1978). [CrossRef]
5. N. A. Goryunova, L. B. Zlatkin, and K. K. Ivanov, “Optical anisotropy of A^{2}B^{4}C^{5}_{2} crystals,” J. Phys. Chem. Solids 31(11), 2557–2561 (1970). [CrossRef]
10. K. T. Zawilski, P. G. Schunemann, T. C. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, “Growth and characterization of large CdSiP_{2} single crystals,” J. Cryst. Growth 312(8), 1127–1132 (2010). [CrossRef]
10. K. T. Zawilski, P. G. Schunemann, T. C. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, “Growth and characterization of large CdSiP_{2} single crystals,” J. Cryst. Growth 312(8), 1127–1132 (2010). [CrossRef]
2. Nonlinearity of CSP
11. V. Petrov, F. Noack, I. Tunchev, P. Schunemann, and K. Zawilski, “The nonlinear coefficient d_{36} of CdSiP_{2},” Proc. SPIE 7197, 71970M (2009). [CrossRef]
12. P. D. Mason, D. J. Jackson, and E. K. Gorton, “CO_{2} laser frequency doubling in ZnGeP_{2},” Opt. Commun. 110(1-2), 163–166 (1994). [CrossRef]
13. V. Petrov, V. Badikov, and V. Panyutin, “Quaternary nonlinear optical crystals for the mid-infrared spectral range from 5 to 12 micron,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. Sorokina, eds., NATO Science for Peace and Security Series - B: Physics and Biophysics (Springer, 2008), pp. 105–147.
14. L. P. Gonzalez, D. Upchurch, J. O. Barnes, P. G. Schunemann, K. Zawilski, and S. Guha, “Second harmonic generation in CdSiP_{2},” Proc. SPIE 7197, 71970N (2009). [CrossRef]
3. Sellmeier equations and phase-matching properties
15. W. R. L. Lambrecht and X. Jiang, “Noncritically phase-matched second-harmonic-generation chalcopyrites based on CdSiAs_{2} and CdSiP_{2},” Phys. Rev. B 70(4), 045204 (2004). [CrossRef]
10. K. T. Zawilski, P. G. Schunemann, T. C. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, “Growth and characterization of large CdSiP_{2} single crystals,” J. Cryst. Growth 312(8), 1127–1132 (2010). [CrossRef]
16. G. Ghosh, “Dispersion of temperature coefficients of birefringence in some chalcopyrite crystals,” Appl. Opt. 23(7), 976–978 (1984). [CrossRef] [PubMed]
17. P. G. Schunemann, L. A. Pomeranz, K. T. Zawilski, J. Wei, L. P. Gonzalez, S. Guha, and T. M. Pollak, “Efficient mid-infrared optical parametric oscillator based on CdSiP_{2},” Advances in Optical Materials, San Jose (CA), USA, Oct. 14–15, 2009, Conference Program and Technical Digest, Paper AWA3.
19. K. Kato, N. Umemura, and V. Petrov, “Sellmeier and thermo-optic dispersion formulas for CdSiP_{2},” J. Appl. Phys. 109(11), 116104 (2011). [CrossRef]
20. V. Petrov, G. Marchev, P. G. Schunemann, A. Tyazhev, K. T. Zawilski, and T. M. Pollak, “Subnanosecond, 1 kHz, temperature-tuned, noncritical mid-infrared optical parametric oscillator based on CdSiP_{2} crystal pumped at 1064 nm,” Opt. Lett. 35(8), 1230–1232 (2010). [CrossRef] [PubMed]
17. P. G. Schunemann, L. A. Pomeranz, K. T. Zawilski, J. Wei, L. P. Gonzalez, S. Guha, and T. M. Pollak, “Efficient mid-infrared optical parametric oscillator based on CdSiP_{2},” Advances in Optical Materials, San Jose (CA), USA, Oct. 14–15, 2009, Conference Program and Technical Digest, Paper AWA3.
20. V. Petrov, G. Marchev, P. G. Schunemann, A. Tyazhev, K. T. Zawilski, and T. M. Pollak, “Subnanosecond, 1 kHz, temperature-tuned, noncritical mid-infrared optical parametric oscillator based on CdSiP_{2} crystal pumped at 1064 nm,” Opt. Lett. 35(8), 1230–1232 (2010). [CrossRef] [PubMed]
19. K. Kato, N. Umemura, and V. Petrov, “Sellmeier and thermo-optic dispersion formulas for CdSiP_{2},” J. Appl. Phys. 109(11), 116104 (2011). [CrossRef]
10. K. T. Zawilski, P. G. Schunemann, T. C. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, “Growth and characterization of large CdSiP_{2} single crystals,” J. Cryst. Growth 312(8), 1127–1132 (2010). [CrossRef]
18. V. Kemlin, P. Brand, B. Boulanger, P. Segonds, P. G. Schunemann, K. T. Zawilski, B. Ménaert, and J. Debray, “Phase-matching properties and refined Sellmeier equations of the new nonlinear infrared crystal CdSiP_{2.},” Opt. Lett. 36(10), 1800–1802 (2011). [CrossRef] [PubMed]
15. W. R. L. Lambrecht and X. Jiang, “Noncritically phase-matched second-harmonic-generation chalcopyrites based on CdSiAs_{2} and CdSiP_{2},” Phys. Rev. B 70(4), 045204 (2004). [CrossRef]
17. P. G. Schunemann, L. A. Pomeranz, K. T. Zawilski, J. Wei, L. P. Gonzalez, S. Guha, and T. M. Pollak, “Efficient mid-infrared optical parametric oscillator based on CdSiP_{2},” Advances in Optical Materials, San Jose (CA), USA, Oct. 14–15, 2009, Conference Program and Technical Digest, Paper AWA3.
18. V. Kemlin, P. Brand, B. Boulanger, P. Segonds, P. G. Schunemann, K. T. Zawilski, B. Ménaert, and J. Debray, “Phase-matching properties and refined Sellmeier equations of the new nonlinear infrared crystal CdSiP_{2.},” Opt. Lett. 36(10), 1800–1802 (2011). [CrossRef] [PubMed]
19. K. Kato, N. Umemura, and V. Petrov, “Sellmeier and thermo-optic dispersion formulas for CdSiP_{2},” J. Appl. Phys. 109(11), 116104 (2011). [CrossRef]
21. G. C. Bhar, “Sphalerite vibration mode in chalcopyrites,” Phys. Rev. B 18(4), 1790–1793 (1978). [CrossRef]
22. M. Bettini, W. Bauhofer, M. Cardona, and R. Nitsche, “Optical phonons in CdSiP_{2},” Phys. Status Solidi B 63(2), 641–648 (1974). [CrossRef]
18. V. Kemlin, P. Brand, B. Boulanger, P. Segonds, P. G. Schunemann, K. T. Zawilski, B. Ménaert, and J. Debray, “Phase-matching properties and refined Sellmeier equations of the new nonlinear infrared crystal CdSiP_{2.},” Opt. Lett. 36(10), 1800–1802 (2011). [CrossRef] [PubMed]
15. W. R. L. Lambrecht and X. Jiang, “Noncritically phase-matched second-harmonic-generation chalcopyrites based on CdSiAs_{2} and CdSiP_{2},” Phys. Rev. B 70(4), 045204 (2004). [CrossRef]
18. V. Kemlin, P. Brand, B. Boulanger, P. Segonds, P. G. Schunemann, K. T. Zawilski, B. Ménaert, and J. Debray, “Phase-matching properties and refined Sellmeier equations of the new nonlinear infrared crystal CdSiP_{2.},” Opt. Lett. 36(10), 1800–1802 (2011). [CrossRef] [PubMed]
18. V. Kemlin, P. Brand, B. Boulanger, P. Segonds, P. G. Schunemann, K. T. Zawilski, B. Ménaert, and J. Debray, “Phase-matching properties and refined Sellmeier equations of the new nonlinear infrared crystal CdSiP_{2.},” Opt. Lett. 36(10), 1800–1802 (2011). [CrossRef] [PubMed]
19. K. Kato, N. Umemura, and V. Petrov, “Sellmeier and thermo-optic dispersion formulas for CdSiP_{2},” J. Appl. Phys. 109(11), 116104 (2011). [CrossRef]
4. Broadband infrared continuum generation
23. V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB_{3}O_{6},” Laser Photon. Rev. 4(1), 53–98 (2010). [CrossRef]
24. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31(1), 71–73 (2006). [CrossRef] [PubMed]
23. V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB_{3}O_{6},” Laser Photon. Rev. 4(1), 53–98 (2010). [CrossRef]
25. A. Birmontas, A. Piskarskas, and A. Stabinis, “Dispersion anomalies of tuning characteristics and spectrum of an optical parametric oscillator,” Sov. J. Quantum Electron. 13(9), 1243–1245 (1983) [transl. from Kvantovaya Elektron. (Moscow)10, 1881–1884 (1983)]. [CrossRef]
26. B. Bareĭka, A. Birmontas, G. Dikchyus, A. Piskarskas, V. Sirutkaitis, and A. Stabinis, “Parametric generation of picosecond continuum in near-infrared and visible ranges on the basis of a quadratic nonlinearity,” Sov. J. Quantum Electron. 12(12), 1654–1656 (1982) [transl. from Kvantovaya Elektron. (Moscow)9, 2534–2536 (1982)]. [CrossRef]
27. J.-J. Zondy and D. Touahri, “Updated thermo-optic coefficients of AgGaS_{2} from temperature-tuned noncritical 3ω ω → 2ω infrared parametric amplification,” J. Opt. Soc. Am. B 14(6), 1331–1338 (1997). [CrossRef]
29. G. C. Bhar and G. Ghosh, “Temperature-dependent Sellmeier coefficients and coherence lengths for some chalcopyrite crystals,” J. Opt. Soc. Am. 69(5), 730–733 (1979). [CrossRef]
30. S. I. Orlov, E. V. Pestryakov, and Y. N. Polivanov, “Optical parametric amplification with a bandwidth exceeding an octave,” Quantum Electron. 34(5), 477–481 (2004) [transl. from Kvantovaya Elektron. (Moscow)34, 477–481 (2004)]. [CrossRef]
23. V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB_{3}O_{6},” Laser Photon. Rev. 4(1), 53–98 (2010). [CrossRef]
25. A. Birmontas, A. Piskarskas, and A. Stabinis, “Dispersion anomalies of tuning characteristics and spectrum of an optical parametric oscillator,” Sov. J. Quantum Electron. 13(9), 1243–1245 (1983) [transl. from Kvantovaya Elektron. (Moscow)10, 1881–1884 (1983)]. [CrossRef]
23. V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB_{3}O_{6},” Laser Photon. Rev. 4(1), 53–98 (2010). [CrossRef]
17. P. G. Schunemann, L. A. Pomeranz, K. T. Zawilski, J. Wei, L. P. Gonzalez, S. Guha, and T. M. Pollak, “Efficient mid-infrared optical parametric oscillator based on CdSiP_{2},” Advances in Optical Materials, San Jose (CA), USA, Oct. 14–15, 2009, Conference Program and Technical Digest, Paper AWA3.
20. V. Petrov, G. Marchev, P. G. Schunemann, A. Tyazhev, K. T. Zawilski, and T. M. Pollak, “Subnanosecond, 1 kHz, temperature-tuned, noncritical mid-infrared optical parametric oscillator based on CdSiP_{2} crystal pumped at 1064 nm,” Opt. Lett. 35(8), 1230–1232 (2010). [CrossRef] [PubMed]
5. Conclusion
References and links
1. | S. G. Abrahams and J. L. Bernstein, “Luminescent piezoelectric CdSiP_{2}: Normal probability plot analysis, crystal structure, and generalized structure of the A^{II}B^{IV}C^{V}_{2} family,” J. Chem. Phys. 55(2), 796–803 (1971). [CrossRef] |
2. | G. A. Ambrazyavichyus, G. A. Babonas, and A. Yu. Shileika, “Birefringence of pseudodirect bandgap A^{2}B^{4}C^{5}_{2} semiconductors,” Sov. Phys. Collect. 17, 51–55 (1977) [transl. from Lit. Fiz. Sb. 17, 205–211 (1977)]. |
3. | N. Itoh, T. Fujinaga, and T. Nakau, “Birefringence in CdSiP_{2},” Jpn. J. Appl. Phys. 17(5), 951–952 (1978). [CrossRef] |
4. | E. Buehler and J. H. Wernick, “Concerning growth of single crystals of the II-IV-V diamond-like compounds ZnSiP_{2}, CdSiP_{2}, ZnGeP_{2}, and CdSnP_{2} and standard enthalpies of formation for ZnSiP_{2} and CdSiP_{2},” J. Cryst. Growth 8(4), 324–332 (1971). [CrossRef] |
5. | N. A. Goryunova, L. B. Zlatkin, and K. K. Ivanov, “Optical anisotropy of A^{2}B^{4}C^{5}_{2} crystals,” J. Phys. Chem. Solids 31(11), 2557–2561 (1970). [CrossRef] |
6. | G. Ambrazyavichyus, G. Babonas, and V. Karpus, “Optical activity of CdSiP_{2},” Sov. Phys. Semicond. 12, 1210–1211 (1978) [trasl. from Fiz. Tekh. Poluprovodn. 12, 2034–2036 (1978)]. |
7. | A. Ambrazevicius and G. Babonas, “Dependence of birefringence of pseudodirect gap A^{2}B^{4}C^{5}_{2} compounds on hydrostatic pressure and on temperature,” Sov. Phys. Collect. 18, 52–59 (1978) [transl. from Lit. Fiz. Sb. 18, 765–774 (1978)]. |
8. | P. G. Schunemann, K. T. Zawilski, T. M. Pollak, D. E. Zelmon, N. C. Fernelius, and F. Kenneth Hopkins, “New nonlinear optical crystal for mid-IR OPOs: CdSiP_{2},” Advanced Solid-State Photonics, Nara, Japan, Jan. 27–30, 2008, Conference Program and Technical Digest, Post-Deadline Paper MG6. |
9. | P. G. Schunemann, K. T. Zawilski, T. M. Pollak, V. Petrov, and D. E. Zelmon, “CdSiP_{2}: a new nonlinear optical crystal for 1 and 1.5-micron-pumped, mid-IR generation,” Advanced Solid-State Photonics, Denver (CO), USA, Feb. 1–4, 2009, Conference Program and Technical Digest, Paper TuC6. |
10. | K. T. Zawilski, P. G. Schunemann, T. C. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, “Growth and characterization of large CdSiP_{2} single crystals,” J. Cryst. Growth 312(8), 1127–1132 (2010). [CrossRef] |
11. | V. Petrov, F. Noack, I. Tunchev, P. Schunemann, and K. Zawilski, “The nonlinear coefficient d_{36} of CdSiP_{2},” Proc. SPIE 7197, 71970M (2009). [CrossRef] |
12. | P. D. Mason, D. J. Jackson, and E. K. Gorton, “CO_{2} laser frequency doubling in ZnGeP_{2},” Opt. Commun. 110(1-2), 163–166 (1994). [CrossRef] |
13. | V. Petrov, V. Badikov, and V. Panyutin, “Quaternary nonlinear optical crystals for the mid-infrared spectral range from 5 to 12 micron,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. Sorokina, eds., NATO Science for Peace and Security Series - B: Physics and Biophysics (Springer, 2008), pp. 105–147. |
14. | L. P. Gonzalez, D. Upchurch, J. O. Barnes, P. G. Schunemann, K. Zawilski, and S. Guha, “Second harmonic generation in CdSiP_{2},” Proc. SPIE 7197, 71970N (2009). [CrossRef] |
15. | W. R. L. Lambrecht and X. Jiang, “Noncritically phase-matched second-harmonic-generation chalcopyrites based on CdSiAs_{2} and CdSiP_{2},” Phys. Rev. B 70(4), 045204 (2004). [CrossRef] |
16. | G. Ghosh, “Dispersion of temperature coefficients of birefringence in some chalcopyrite crystals,” Appl. Opt. 23(7), 976–978 (1984). [CrossRef] [PubMed] |
17. | P. G. Schunemann, L. A. Pomeranz, K. T. Zawilski, J. Wei, L. P. Gonzalez, S. Guha, and T. M. Pollak, “Efficient mid-infrared optical parametric oscillator based on CdSiP_{2},” Advances in Optical Materials, San Jose (CA), USA, Oct. 14–15, 2009, Conference Program and Technical Digest, Paper AWA3. |
18. | V. Kemlin, P. Brand, B. Boulanger, P. Segonds, P. G. Schunemann, K. T. Zawilski, B. Ménaert, and J. Debray, “Phase-matching properties and refined Sellmeier equations of the new nonlinear infrared crystal CdSiP_{2.},” Opt. Lett. 36(10), 1800–1802 (2011). [CrossRef] [PubMed] |
19. | K. Kato, N. Umemura, and V. Petrov, “Sellmeier and thermo-optic dispersion formulas for CdSiP_{2},” J. Appl. Phys. 109(11), 116104 (2011). [CrossRef] |
20. | V. Petrov, G. Marchev, P. G. Schunemann, A. Tyazhev, K. T. Zawilski, and T. M. Pollak, “Subnanosecond, 1 kHz, temperature-tuned, noncritical mid-infrared optical parametric oscillator based on CdSiP_{2} crystal pumped at 1064 nm,” Opt. Lett. 35(8), 1230–1232 (2010). [CrossRef] [PubMed] |
21. | G. C. Bhar, “Sphalerite vibration mode in chalcopyrites,” Phys. Rev. B 18(4), 1790–1793 (1978). [CrossRef] |
22. | M. Bettini, W. Bauhofer, M. Cardona, and R. Nitsche, “Optical phonons in CdSiP_{2},” Phys. Status Solidi B 63(2), 641–648 (1974). [CrossRef] |
23. | V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB_{3}O_{6},” Laser Photon. Rev. 4(1), 53–98 (2010). [CrossRef] |
24. | P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31(1), 71–73 (2006). [CrossRef] [PubMed] |
25. | A. Birmontas, A. Piskarskas, and A. Stabinis, “Dispersion anomalies of tuning characteristics and spectrum of an optical parametric oscillator,” Sov. J. Quantum Electron. 13(9), 1243–1245 (1983) [transl. from Kvantovaya Elektron. (Moscow)10, 1881–1884 (1983)]. [CrossRef] |
26. | B. Bareĭka, A. Birmontas, G. Dikchyus, A. Piskarskas, V. Sirutkaitis, and A. Stabinis, “Parametric generation of picosecond continuum in near-infrared and visible ranges on the basis of a quadratic nonlinearity,” Sov. J. Quantum Electron. 12(12), 1654–1656 (1982) [transl. from Kvantovaya Elektron. (Moscow)9, 2534–2536 (1982)]. [CrossRef] |
27. | J.-J. Zondy and D. Touahri, “Updated thermo-optic coefficients of AgGaS_{2} from temperature-tuned noncritical 3ω ω → 2ω infrared parametric amplification,” J. Opt. Soc. Am. B 14(6), 1331–1338 (1997). [CrossRef] |
28. | D. A. Roberts, “Dispersion equations for nonlinear optical crystals: KDP, AgGaSe_{2}, and AgGaS_{2.},” Appl. Opt. 35(24), 4677–4688 (1996). [CrossRef] [PubMed] |
29. | G. C. Bhar and G. Ghosh, “Temperature-dependent Sellmeier coefficients and coherence lengths for some chalcopyrite crystals,” J. Opt. Soc. Am. 69(5), 730–733 (1979). [CrossRef] |
30. | S. I. Orlov, E. V. Pestryakov, and Y. N. Polivanov, “Optical parametric amplification with a bandwidth exceeding an octave,” Quantum Electron. 34(5), 477–481 (2004) [transl. from Kvantovaya Elektron. (Moscow)34, 477–481 (2004)]. [CrossRef] |
31. | T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003). [CrossRef] |
32. | E. Takaoka and K. Kato, “Thermo-optic dispersion formula for AgGaS_{2.},” Appl. Opt. 38(21), 4577–4580 (1999). [CrossRef] [PubMed] |
33. | E. Tanaka and K. Kato, “Thermo-optic dispersion formula of AgGaSe_{2} and its practical applications,” Appl. Opt. 37(3), 561–564 (1998). [CrossRef] [PubMed] |
34. | J.-J. Zondy, D. Touahri, and O. Acef, “Absolute value of the d_{36} nonlinear coefficient of AgGaS_{2}: prospect for a low-threshold doubly resonant oscillator-based 3:1 frequency divider,” J. Opt. Soc. Am. 14(10), 2481–2497 (1997). [CrossRef] |
35. | J.-J. Zondy, “Experimental investigation of single and twin AgGaSe_{2} crystals for CW 10.2 µm SHG,” Opt. Commun. 119(3-4), 320–326 (1995). [CrossRef] |
36. | T. Skauli, K. L. Vodopyanov, T. J. Pinguet, A. Schober, O. Levi, L. A. Eyres, M. M. Fejer, J. S. Harris, B. Gerard, L. Becouarn, E. Lallier, and G. Arisholm, “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation,” Opt. Lett. 27(8), 628–630 (2002). [CrossRef] [PubMed] |
OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4975) Nonlinear optics : Parametric processes
ToC Category:
Nonlinear Optical Materials
History
Original Manuscript: September 19, 2011
Revised Manuscript: October 13, 2011
Manuscript Accepted: October 13, 2011
Published: October 17, 2011
Virtual Issues
Nonlinear Optics (2011) Optical Materials Express
Citation
Vincent Kemlin, Benoit Boulanger, Valentin Petrov, Patricia Segonds, B. Ménaert, Peter G. Schunneman, and Kevin T. Zawilski, "Nonlinear, dispersive, and phase-matching properties of the new chalcopyrite CdSiP_{2} [Invited]," Opt. Mater. Express 1, 1292-1300 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-7-1292
Sort: Year | Journal | Reset
References
- S. G. Abrahams and J. L. Bernstein, “Luminescent piezoelectric CdSiP2: Normal probability plot analysis, crystal structure, and generalized structure of the AIIBIVCV2 family,” J. Chem. Phys.55(2), 796–803 (1971). [CrossRef]
- G. A. Ambrazyavichyus, G. A. Babonas, and A. Yu. Shileika, “Birefringence of pseudodirect bandgap A2B4C52 semiconductors,” Sov. Phys. Collect.17, 51–55 (1977) [transl. from Lit. Fiz. Sb. 17, 205–211 (1977)].
- N. Itoh, T. Fujinaga, and T. Nakau, “Birefringence in CdSiP2,” Jpn. J. Appl. Phys.17(5), 951–952 (1978). [CrossRef]
- E. Buehler and J. H. Wernick, “Concerning growth of single crystals of the II-IV-V diamond-like compounds ZnSiP2, CdSiP2, ZnGeP2, and CdSnP2 and standard enthalpies of formation for ZnSiP2 and CdSiP2,” J. Cryst. Growth8(4), 324–332 (1971). [CrossRef]
- N. A. Goryunova, L. B. Zlatkin, and K. K. Ivanov, “Optical anisotropy of A2B4C52 crystals,” J. Phys. Chem. Solids31(11), 2557–2561 (1970). [CrossRef]
- G. Ambrazyavichyus, G. Babonas, and V. Karpus, “Optical activity of CdSiP2,” Sov. Phys. Semicond.12, 1210–1211 (1978) [trasl. from Fiz. Tekh. Poluprovodn. 12, 2034–2036 (1978)].
- A. Ambrazevicius and G. Babonas, “Dependence of birefringence of pseudodirect gap A2B4C52 compounds on hydrostatic pressure and on temperature,” Sov. Phys. Collect.18, 52–59 (1978) [transl. from Lit. Fiz. Sb. 18, 765–774 (1978)].
- P. G. Schunemann, K. T. Zawilski, T. M. Pollak, D. E. Zelmon, N. C. Fernelius, and F. Kenneth Hopkins, “New nonlinear optical crystal for mid-IR OPOs: CdSiP2,” Advanced Solid-State Photonics, Nara, Japan, Jan. 27–30, 2008, Conference Program and Technical Digest, Post-Deadline Paper MG6.
- P. G. Schunemann, K. T. Zawilski, T. M. Pollak, V. Petrov, and D. E. Zelmon, “CdSiP2: a new nonlinear optical crystal for 1 and 1.5-micron-pumped, mid-IR generation,” Advanced Solid-State Photonics, Denver (CO), USA, Feb. 1–4, 2009, Conference Program and Technical Digest, Paper TuC6.
- K. T. Zawilski, P. G. Schunemann, T. C. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth312(8), 1127–1132 (2010). [CrossRef]
- V. Petrov, F. Noack, I. Tunchev, P. Schunemann, and K. Zawilski, “The nonlinear coefficient d36 of CdSiP2,” Proc. SPIE7197, 71970M (2009). [CrossRef]
- P. D. Mason, D. J. Jackson, and E. K. Gorton, “CO2 laser frequency doubling in ZnGeP2,” Opt. Commun.110(1-2), 163–166 (1994). [CrossRef]
- V. Petrov, V. Badikov, and V. Panyutin, “Quaternary nonlinear optical crystals for the mid-infrared spectral range from 5 to 12 micron,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. Sorokina, eds., NATO Science for Peace and Security Series - B: Physics and Biophysics (Springer, 2008), pp. 105–147.
- L. P. Gonzalez, D. Upchurch, J. O. Barnes, P. G. Schunemann, K. Zawilski, and S. Guha, “Second harmonic generation in CdSiP2,” Proc. SPIE7197, 71970N (2009). [CrossRef]
- W. R. L. Lambrecht and X. Jiang, “Noncritically phase-matched second-harmonic-generation chalcopyrites based on CdSiAs2 and CdSiP2,” Phys. Rev. B70(4), 045204 (2004). [CrossRef]
- G. Ghosh, “Dispersion of temperature coefficients of birefringence in some chalcopyrite crystals,” Appl. Opt.23(7), 976–978 (1984). [CrossRef] [PubMed]
- P. G. Schunemann, L. A. Pomeranz, K. T. Zawilski, J. Wei, L. P. Gonzalez, S. Guha, and T. M. Pollak, “Efficient mid-infrared optical parametric oscillator based on CdSiP2,” Advances in Optical Materials, San Jose (CA), USA, Oct. 14–15, 2009, Conference Program and Technical Digest, Paper AWA3.
- V. Kemlin, P. Brand, B. Boulanger, P. Segonds, P. G. Schunemann, K. T. Zawilski, B. Ménaert, and J. Debray, “Phase-matching properties and refined Sellmeier equations of the new nonlinear infrared crystal CdSiP2.,” Opt. Lett.36(10), 1800–1802 (2011). [CrossRef] [PubMed]
- K. Kato, N. Umemura, and V. Petrov, “Sellmeier and thermo-optic dispersion formulas for CdSiP2,” J. Appl. Phys.109(11), 116104 (2011). [CrossRef]
- V. Petrov, G. Marchev, P. G. Schunemann, A. Tyazhev, K. T. Zawilski, and T. M. Pollak, “Subnanosecond, 1 kHz, temperature-tuned, noncritical mid-infrared optical parametric oscillator based on CdSiP2 crystal pumped at 1064 nm,” Opt. Lett.35(8), 1230–1232 (2010). [CrossRef] [PubMed]
- G. C. Bhar, “Sphalerite vibration mode in chalcopyrites,” Phys. Rev. B18(4), 1790–1793 (1978). [CrossRef]
- M. Bettini, W. Bauhofer, M. Cardona, and R. Nitsche, “Optical phonons in CdSiP2,” Phys. Status Solidi B63(2), 641–648 (1974). [CrossRef]
- V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photon. Rev.4(1), 53–98 (2010). [CrossRef]
- P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett.31(1), 71–73 (2006). [CrossRef] [PubMed]
- A. Birmontas, A. Piskarskas, and A. Stabinis, “Dispersion anomalies of tuning characteristics and spectrum of an optical parametric oscillator,” Sov. J. Quantum Electron.13(9), 1243–1245 (1983) [transl. from Kvantovaya Elektron. (Moscow)10, 1881–1884 (1983)]. [CrossRef]
- B. Bareĭka, A. Birmontas, G. Dikchyus, A. Piskarskas, V. Sirutkaitis, and A. Stabinis, “Parametric generation of picosecond continuum in near-infrared and visible ranges on the basis of a quadratic nonlinearity,” Sov. J. Quantum Electron.12(12), 1654–1656 (1982) [transl. from Kvantovaya Elektron. (Moscow)9, 2534–2536 (1982)]. [CrossRef]
- J.-J. Zondy and D. Touahri, “Updated thermo-optic coefficients of AgGaS2 from temperature-tuned noncritical 3ω ω → 2ω infrared parametric amplification,” J. Opt. Soc. Am. B14(6), 1331–1338 (1997). [CrossRef]
- D. A. Roberts, “Dispersion equations for nonlinear optical crystals: KDP, AgGaSe2, and AgGaS2.,” Appl. Opt.35(24), 4677–4688 (1996). [CrossRef] [PubMed]
- G. C. Bhar and G. Ghosh, “Temperature-dependent Sellmeier coefficients and coherence lengths for some chalcopyrite crystals,” J. Opt. Soc. Am.69(5), 730–733 (1979). [CrossRef]
- S. I. Orlov, E. V. Pestryakov, and Y. N. Polivanov, “Optical parametric amplification with a bandwidth exceeding an octave,” Quantum Electron.34(5), 477–481 (2004) [transl. from Kvantovaya Elektron. (Moscow)34, 477–481 (2004)]. [CrossRef]
- T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys.94(10), 6447–6455 (2003). [CrossRef]
- E. Takaoka and K. Kato, “Thermo-optic dispersion formula for AgGaS2.,” Appl. Opt.38(21), 4577–4580 (1999). [CrossRef] [PubMed]
- E. Tanaka and K. Kato, “Thermo-optic dispersion formula of AgGaSe2 and its practical applications,” Appl. Opt.37(3), 561–564 (1998). [CrossRef] [PubMed]
- J.-J. Zondy, D. Touahri, and O. Acef, “Absolute value of the d36 nonlinear coefficient of AgGaS2: prospect for a low-threshold doubly resonant oscillator-based 3:1 frequency divider,” J. Opt. Soc. Am.14(10), 2481–2497 (1997). [CrossRef]
- J.-J. Zondy, “Experimental investigation of single and twin AgGaSe2 crystals for CW 10.2 µm SHG,” Opt. Commun.119(3-4), 320–326 (1995). [CrossRef]
- T. Skauli, K. L. Vodopyanov, T. J. Pinguet, A. Schober, O. Levi, L. A. Eyres, M. M. Fejer, J. S. Harris, B. Gerard, L. Becouarn, E. Lallier, and G. Arisholm, “Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation,” Opt. Lett.27(8), 628–630 (2002). [CrossRef] [PubMed]
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.