OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 8 — Dec. 1, 2011
  • pp: 1555–1560
« Show journal navigation

Nonpolar light emitting diode made by m-plane n-ZnO/p-GaN heterostructure

C. W. Chen, S. C. Hung, C. H. Lee, C. J. Tun, C. H. Kuo, M. D. Yang, C. W. Yeh, C. H. Wu, and G. C. Chi  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 8, pp. 1555-1560 (2011)
http://dx.doi.org/10.1364/OME.1.001555


View Full Text Article

Acrobat PDF (914 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nonpolar (100) m-plane n-ZnO/p-GaN light-emitting-diodes (LEDs) were grown by chemical vapor deposition on p-GaN templates which was grown by metalorganic chemical vapor deposition on LiAlO2(100) substrate. Direct current (DC) electroluminescence (EL) measurements yielded a peak at 458nm. The EL peak position was independent of drive current and a full width of half maximum (FWHM) of 21.8 nm was realized at 20mA. The current-voltage characteristics of these diodes showed a forward voltage (Vf) of 6V with a series resistance of 2.2 × 105 Ω.

© 2011 OSA

The current commercial technology for III-nitride-based and ZnO based LEDs employs films grown in the polar c direction [1

1. S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, 1997).

,2

2. S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing, defects, and devices,” J. Appl. Phys. 86(1), 1–77 (1999). [CrossRef]

]. However, conventional c-plane III-nitride-based and ZnO based LEDs suffer from the quantum-confined Stark effect [3

3. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells,” Jpn. J. Appl. Phys. 36(Part 2, No. 4A), L382–L385 (1997). [CrossRef]

,4

4. D. Miller, D. Chemla, T. Damen, A. Gossard, W. Wiegmann, T. Wood, and C. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32(2), 1043–1060 (1985). [CrossRef]

] due to the existence of piezoelectric and spontaneous polarization [5

5. F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024–R10027 (1997). [CrossRef]

]. The growth of nonpolar (Al, Ga, In)N and ZnO have attracted great interest for its potential use in the fabrication of nonpolar electronic and optoelectronic devices [6

6. A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. DenBaars, S. Nakamura, and U. K. Mishra, “Nonpolar InGaN∕GaN emitters on reduced-defect lateral epitaxially overgrown a-plane GaN with drive-current-independent electroluminescence emission peak,” Appl. Phys. Lett. 85(22), 5143–5145 (2004). [CrossRef]

,7

7. M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, “Structural characterization of nonpolar (112̄0) a-plane GaN thin films grown on (11̄02) r-plane sapphire,” Appl. Phys. Lett. 81(3), 469–471 (2002). [CrossRef]

]. The built-in electric fields along the c-plane direction cause spatial separation of electron and holes that in turn gives rise to restricted carrier recombination efficiency, reduced oscillator strength and red-shifted emission [8

8. M. C. Schmidt, K.-C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of Nonpolar m -Plane InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(9), L190–L191 (2007). [CrossRef]

21

21. S.-H. Park, D. Ahn, B.-H. Koo, and J.-E. Oh, “Optical gain improvement in type-II InGaN/GaNSb/GaN quantum well structures composed of InGaN/and GaNSb layers,” Appl. Phys. Lett. 96(5), 051106 (2010). [CrossRef]

]. In the last few years, a lot of research group have also attempted different approaches to avoid the built-in electric field by using non-polar QW [8

8. M. C. Schmidt, K.-C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of Nonpolar m -Plane InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(9), L190–L191 (2007). [CrossRef]

12

12. J. W. Raring, M. C. Schmidt, C. Poblenz, Y.-C. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates,” Appl. Phys. Express 3(11), 112101 (2010). [CrossRef]

], c-plane QW with larger optical matrix element [13

13. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]

21

21. S.-H. Park, D. Ahn, B.-H. Koo, and J.-E. Oh, “Optical gain improvement in type-II InGaN/GaNSb/GaN quantum well structures composed of InGaN/and GaNSb layers,” Appl. Phys. Lett. 96(5), 051106 (2010). [CrossRef]

], valence subband rearrangement [22

22. J. Zhang, H. Zhao, and N. Tansu, “Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers,” Appl. Phys. Lett. 97(11), 111105 (2010). [CrossRef]

25

25. T. K. Sharma, D. Naveh, and E. Towe, “Strain-driven light-polarization switching in deep ultraviolet nitride emitters,” Phys. Rev. B 84(3), 035305 (2011). [CrossRef]

] approaches in III-Nitride semiconductors.

In this study, we report on the growth and electronic and luminescence characteristics of CVD-regrown nonpolar m-plane n-ZnO/m-plane p-GaN hetreojunction LEDs using MOCVD-grown p-GaN/LiAlO2(100) template. In particular, the effect of emission wavelength and linewidth in the electroluminescence (EL) emission spectra were investigated.

The LED structure, as shown in Fig. 1(A)
Fig. 1 (A) Schematic of m-plane n-ZnO/m-plane p-GaN/LiAlO2 heterostructure LEDs, (B) Room-temperature PL spectra of ZnO thin film on m-plane p-type GaN, (C) Top-view FE-SEM image of as-grown ZnO thin films on m-plane p-GaN film, (D) Cross-sectional FE-SEM image of as-grown ZnO films on p-GaN film.
, was regrown by CVD on p-GaN/LiAlO2 template fabricated by metal organic vapor phase deposition (MOCVD). GaN epilayer with p-type dopant were grown on LAO (1 0 0) substrates in a Thomas Swan MOCVD system. This system used a 3 × 2” Close- Coupled Showerhead reactor. TMGa, CP2Mg, and NH3 were used as the sources of Ga, Mg, and N, respectively. Before growth, the substrate loaded in the growth chamber was initially treated at 1000°C for 120 s for further out-gassing in N2 ambient. A two- step growth method was then applied to grow p-GaN epilayer. First, an AlN nucleation layer was grown on the LAO substrate at 660, 680, and 700°C in N2 ambient at 200 mbar for 30 s. The ambient was then changed to H2 and the substrate temperature and pressure were changed to 1050 °C and 100 mbar, respectively, to grow a 0.6-mm-thick p-GaN layer at a growth rate of 1 μm/h [26

26. C. J. Tun, C. H. Kuo, Y. K. Fu, C. W. Kuo, M. M. C. Chou, and G. C. Chi, “Growth and characterization of c-plane AlGaN on γ-LiAlO2,” J. Cryst. Growth 311(14), 3726–3730 (2009). [CrossRef]

]. In situ normal incidence reflectance was measured throughout the growth process by illuminating the samples with a tungsten lamp. Light reflected through a spectrometer was collected by a photodiode [27

27. C. W. Chen, C. J. Pan, F. C. Tsao, Y. L. Liu, G. C. Chi, C. Y. Chang, and T. H. Hsueh, “Nanostructured Surface Morphology of ZnO Grown on A-plane GaN,” ECS Trans. 25(12), 113–116 (2009). [CrossRef]

]. The regrowth of ZnO, carried out in a horizontal CVD reactor, Zinc shots(99.9999%) were placed in a quartz boat as the Zn source in the center of a quartz tube in a furnace. The quartz tube was kept at 1 atmosphere pressure by flowing high purity Ar (99.99%) with a flow rate of 100 sccm and heated up to 800°C. When the temperature was reached up to 800°C, high purity oxygen (99.9999%) was introduced with a flow rate of 5 sccm for the growth of the ZnO films. The thickness of n-ZnO layer is independent of the amount of Zn shots because we do believed that the Zn were evaporated in a very short time when the saturated vapor pressure reached. The morphology of the as grown ZnO film on GaN/LiAlO2 template was examined by a JEOL JSM-7000F field emission scanning electron microscopy (SEM). X-ray diffraction (XRD) experiments were carried out on a Bede triple-axis diffractometer system, using Cu Kα1 (λ = 1.5406 Å) radiation. Photoluminescence (PL) was measured with a continuous wave He-Cd 325 nm laser with power density incident on the samples ~1 W/cm2. The carrier concentration of n-ZnO is 5 × 1019 cm−3 and mobility of n-ZnO is 12 cm2/(V-s), which were measured by Hall measurement system (Bio-Rad HL5500PC). Diode mesas were defined by reactive ion etching (ICP). Ni and Cr/Au were used as n-ZnO and p-GaN contacts, respectively. The electrical and luminescence characteristics of the diode were measured by on-wafer probing of the devices. The I-V measurements were performed with Agilent 4156C semiconductor parameter analyzer.

Figure 1(B) shows photoluminescence spectra measured at 10 K of the m-plane ZnO regrown on m-GaN/LiAlO2 template. A near band-edge emission at 370.5 nm with a full width at half maximum (FWHM) of 6.5 nm without green emission was observed. This implied that the crystal quality of n-ZnO/p-GaN/ LiAlO2 were good and intrinsic defects and oxygen vacancy inside are low. Figure 1(C) and Fig. 1(D) show the top view and cross section view of SEM images of n-ZnO thin film regrown on p-GaN template under 800°C by CVD with growth time is 1 hour, respectively. As shown in the Fig. 1(C), the n-ZnO thin film showed a smooth surface with roughness is around 16 nm, which is measured by AFM. As shown in Fig. 1(D), the thickness of n-ZnO thin film is around 100 nm, which is so thin and the defect density in the interface between the regrown n-ZnO and p-GaN template is high that the EL intensity will become lower when the driving current excess than 20 mA which will cause some heat in the interface.

Figure 2
Fig. 2 Left: XRD pattern of as-grown nonpolar ZnO. Right: X-ray rocking curve of nonpolar ZnO.
shows the XRD θ/2θ scan results of the n-ZnO/p-GaN/LiAlO2 heterojunction structure. The XRD result of the p-GaN/LiAlO2 template exhibits only one diffraction peak corresponding to the m-plane (100) p-GaN. For the n-ZnO regrown on m-plane p-GaN template, two distinct diffraction peaks were observed. One diffraction peak corresponds to (100) m-plane GaN, the other diffraction peak corresponds to the n-ZnO layer, which is (100) m-plane n-ZnO, respectively. Hence, the n-ZnO layer was grown with a relationship of (100) n-ZnO∥ (100) p-GaN. The rocking curve data of m-plane n-ZnO thin films with full width at half-maximum (FWHM) of 504 acrsec was also shown in Fig. 2. The rocking curve data of m-plane p-GaN on LAO substrate is larger than c-plane p-GaN on sapphire, so, unexpected defects are present. Compared to the results of the nonpolar n-ZnO film grown on r-plane sapphire [22

22. J. Zhang, H. Zhao, and N. Tansu, “Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers,” Appl. Phys. Lett. 97(11), 111105 (2010). [CrossRef]

], the FWHM of rocking curve was about 1000 arcsec. The nonpolar n-ZnO grown on (100) p-GaN had better crystal quality because the ZnO and GaN have a very low lattice mismatch (1.8%).

The RT I–V characteristics of the n-ZnO/p-GaN heterojunction were shown in Fig. 3
Fig. 3 Current-voltage characteristics of m-plane n-ZnO/m-plane p-GaN/LiAlO2 heterojunction LED at room temperature.
. The forward current is approximately 12uA at 10 V, and the turn-on voltage is 6 V. The break down voltage of our result is much smaller than the reported value, the reason should because the high defect density in the interface between regrown n-ZnO and p-GaN template, which might cause some leakage current when applied even small reversed voltage. The turn-on voltage and power consumption exceed those of conventional LEDs, the relatively low forward and reverse threshold voltages are probably due to the existence of interface defects [28

28. J.-M. Jang, C.-R. Kim, H. Ryu, M. Razeghi, and W.-G. Jung, “ZnO 3D flower-like nanostructure synthesized on GaN epitaxial layer by simple route hydrothermal process,” J. Alloy. Comp. 463(1-2), 503–510 (2008). [CrossRef]

,29

29. J. Jang, J. Kim, and W. Jung, “Synthesis of ZnO nanorods on GaN epitaxial layer and Si (100) substrate using a simple hydrothermal process,” Thin Solid Films 516(23), 8524–8529 (2008). [CrossRef]

].

Acknowledgments

This work was supported by the National Science Council of Taiwan under grant number NSC97-2112-M-008-016-MY3.

References and links

1.

S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, 1997).

2.

S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing, defects, and devices,” J. Appl. Phys. 86(1), 1–77 (1999). [CrossRef]

3.

T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells,” Jpn. J. Appl. Phys. 36(Part 2, No. 4A), L382–L385 (1997). [CrossRef]

4.

D. Miller, D. Chemla, T. Damen, A. Gossard, W. Wiegmann, T. Wood, and C. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32(2), 1043–1060 (1985). [CrossRef]

5.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024–R10027 (1997). [CrossRef]

6.

A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. DenBaars, S. Nakamura, and U. K. Mishra, “Nonpolar InGaN∕GaN emitters on reduced-defect lateral epitaxially overgrown a-plane GaN with drive-current-independent electroluminescence emission peak,” Appl. Phys. Lett. 85(22), 5143–5145 (2004). [CrossRef]

7.

M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, “Structural characterization of nonpolar (112̄0) a-plane GaN thin films grown on (11̄02) r-plane sapphire,” Appl. Phys. Lett. 81(3), 469–471 (2002). [CrossRef]

8.

M. C. Schmidt, K.-C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of Nonpolar m -Plane InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(9), L190–L191 (2007). [CrossRef]

9.

R. M. Farrell, D. F. Feezell, M. C. Schmidt, D. A. Haeger, K. M. Kelchner, K. Iso, H. Yamada, M. Saito, K. Fujito, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Continuous-wave Operation of AlGaN-cladding-free Nonpolar m -Plane InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(32), L761–L763 (2007). [CrossRef]

10.

R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 96(23), 231113 (2010). [CrossRef]

11.

T. J. Prosa, P. H. Clifton, H. Zhong, A. Tyagi, R. Shivaraman, S. P. DenBaars, S. Nakamura, and J. S. Speck, “Atom probe analysis of interfacial abruptness and clustering within a single InxGa1−xN quantum well device on semipolar (1011) GaN substrate,” Appl. Phys. Lett. 98(19), 191903 (2011). [CrossRef]

12.

J. W. Raring, M. C. Schmidt, C. Poblenz, Y.-C. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates,” Appl. Phys. Express 3(11), 112101 (2010). [CrossRef]

13.

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]

14.

H. Zhao, G. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009). [CrossRef]

15.

H. Zhao, G. Liu, and N. Tansu, “Analysis of InGaN-delta-InN quantum wells for light-emitting diodes,” Appl. Phys. Lett. 97(13), 131114 (2010). [CrossRef]

16.

C.-T. Liao, M.-C. Tsai, B.-T. Liou, S.-H. Yen, and Y.-K. Kuo, “Improvement in output power of a 460 nm InGaN light-emitting diode using staggered quantum well,” J. Appl. Phys. 108(6), 063107 (2010). [CrossRef]

17.

S.-H. Park, D. Ahn, J. Park, and Y.-T. Lee, “Optical Properties of Staggered InGaN/InGaN/GaN Quantum-Well Structures with Ga- and N-Faces,” Jpn. J. Appl. Phys. 50(7), 072101 (2011). [CrossRef]

18.

R. A. Arif, Y.-K. Ee, and N. Tansu, “Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes,” Appl. Phys. Lett. 91(9), 091110 (2007). [CrossRef]

19.

R. A. Arif, H. Zhao, Y.-K. Ee, and N. Tansu, “Spontaneous Emission and Characteristics of Staggered InGaN Quantum-Well Light-Emitting Diodes,” IEEE J. Quantum Electron. 44(6), 573–580 (2008). [CrossRef]

20.

S.-H. Park, Y.-T. Lee, and J. Park, “Optical properties of type-II InGaN/GaAsN/GaN quantum wells,” Opt. Quantum Electron. 41(11-13), 779–785 (2009). [CrossRef]

21.

S.-H. Park, D. Ahn, B.-H. Koo, and J.-E. Oh, “Optical gain improvement in type-II InGaN/GaNSb/GaN quantum well structures composed of InGaN/and GaNSb layers,” Appl. Phys. Lett. 96(5), 051106 (2010). [CrossRef]

22.

J. Zhang, H. Zhao, and N. Tansu, “Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers,” Appl. Phys. Lett. 97(11), 111105 (2010). [CrossRef]

23.

T. K. Sharma and E. Towe, “Impact of strain on deep ultraviolet nitride laser and light-emitting diodes,” J. Appl. Phys. 109(8), 086104 (2011). [CrossRef]

24.

J. Zhang, H. Zhao, and N. Tansu, “Large optical gain AlGaN-delta-GaN quantum wells laser active regions in mid- and deep-ultraviolet spectral regimes,” Appl. Phys. Lett. 98(17), 171111 (2011). [CrossRef]

25.

T. K. Sharma, D. Naveh, and E. Towe, “Strain-driven light-polarization switching in deep ultraviolet nitride emitters,” Phys. Rev. B 84(3), 035305 (2011). [CrossRef]

26.

C. J. Tun, C. H. Kuo, Y. K. Fu, C. W. Kuo, M. M. C. Chou, and G. C. Chi, “Growth and characterization of c-plane AlGaN on γ-LiAlO2,” J. Cryst. Growth 311(14), 3726–3730 (2009). [CrossRef]

27.

C. W. Chen, C. J. Pan, F. C. Tsao, Y. L. Liu, G. C. Chi, C. Y. Chang, and T. H. Hsueh, “Nanostructured Surface Morphology of ZnO Grown on A-plane GaN,” ECS Trans. 25(12), 113–116 (2009). [CrossRef]

28.

J.-M. Jang, C.-R. Kim, H. Ryu, M. Razeghi, and W.-G. Jung, “ZnO 3D flower-like nanostructure synthesized on GaN epitaxial layer by simple route hydrothermal process,” J. Alloy. Comp. 463(1-2), 503–510 (2008). [CrossRef]

29.

J. Jang, J. Kim, and W. Jung, “Synthesis of ZnO nanorods on GaN epitaxial layer and Si (100) substrate using a simple hydrothermal process,” Thin Solid Films 516(23), 8524–8529 (2008). [CrossRef]

30.

B. J. Jin, S. Im, and S. Y. Lee, “Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition,” Thin Solid Films 366(1-2), 107–110 (2000). [CrossRef]

31.

T. Mukai and S. Nakamura, “Ultraviolet InGaN and GaN Single-Quantum-Well-Structure Light-Emitting Diodes Grown on Epitaxially Laterally Overgrown GaN Substrates,” Jpn. J. Appl. Phys. 38(Part 1, No. 10), 5735–5739 (1999). [CrossRef]

32.

A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. DenBaars, S. Nakamura, and U. K. Mishra, “Nonpolar InGaN∕GaN emitters on reduced-defect lateral epitaxially overgrown a-plane GaN with drive-current-independent electroluminescence emission peak,” Appl. Phys. Lett. 85(22), 5143–5145 (2004). [CrossRef]

33.

P. Kozodoy, A. Abare, R. K. Sink, M. Mack, S. Keller, S. P. DenBaars, U. K. Mishra, and D. Steigerwald, “MOCVD growth of high output power InGaN multiple quantum well light emitting diode,” Mater. Res. Soc. Symp. Proc. 468, 481–486 (1997). [CrossRef]

OCIS Codes
(000.2190) General : Experimental physics
(160.2220) Materials : Defect-center materials

ToC Category:
Semiconductors

History
Original Manuscript: September 7, 2011
Revised Manuscript: November 3, 2011
Manuscript Accepted: November 3, 2011
Published: November 16, 2011

Citation
C. W. Chen, S. C. Hung, C. H. Lee, C. J. Tun, C. H. Kuo, M. D. Yang, C. W. Yeh, C. H. Wu, and G. C. Chi, "Nonpolar light emitting diode made by m-plane n-ZnO/p-GaN heterostructure," Opt. Mater. Express 1, 1555-1560 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-8-1555


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, 1997).
  2. S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing, defects, and devices,” J. Appl. Phys. 86(1), 1–77 (1999). [CrossRef]
  3. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells,” Jpn. J. Appl. Phys. 36(Part 2, No. 4A), L382–L385 (1997). [CrossRef]
  4. D. Miller, D. Chemla, T. Damen, A. Gossard, W. Wiegmann, T. Wood, and C. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32(2), 1043–1060 (1985). [CrossRef]
  5. F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024–R10027 (1997). [CrossRef]
  6. A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. DenBaars, S. Nakamura, and U. K. Mishra, “Nonpolar InGaN∕GaN emitters on reduced-defect lateral epitaxially overgrown a-plane GaN with drive-current-independent electroluminescence emission peak,” Appl. Phys. Lett. 85(22), 5143–5145 (2004). [CrossRef]
  7. M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, “Structural characterization of nonpolar (112̄0) a-plane GaN thin films grown on (11̄02) r-plane sapphire,” Appl. Phys. Lett. 81(3), 469–471 (2002). [CrossRef]
  8. M. C. Schmidt, K.-C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of Nonpolar m -Plane InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(9), L190–L191 (2007). [CrossRef]
  9. R. M. Farrell, D. F. Feezell, M. C. Schmidt, D. A. Haeger, K. M. Kelchner, K. Iso, H. Yamada, M. Saito, K. Fujito, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Continuous-wave Operation of AlGaN-cladding-free Nonpolar m -Plane InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46(32), L761–L763 (2007). [CrossRef]
  10. R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 96(23), 231113 (2010). [CrossRef]
  11. T. J. Prosa, P. H. Clifton, H. Zhong, A. Tyagi, R. Shivaraman, S. P. DenBaars, S. Nakamura, and J. S. Speck, “Atom probe analysis of interfacial abruptness and clustering within a single InxGa1−xN quantum well device on semipolar (1011) GaN substrate,” Appl. Phys. Lett. 98(19), 191903 (2011). [CrossRef]
  12. J. W. Raring, M. C. Schmidt, C. Poblenz, Y.-C. Chang, M. J. Mondry, B. Li, J. Iveland, B. Walters, M. R. Krames, R. Craig, P. Rudy, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates,” Appl. Phys. Express 3(11), 112101 (2010). [CrossRef]
  13. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]
  14. H. Zhao, G. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth temperature profile,” Appl. Phys. Lett. 95(6), 061104 (2009). [CrossRef]
  15. H. Zhao, G. Liu, and N. Tansu, “Analysis of InGaN-delta-InN quantum wells for light-emitting diodes,” Appl. Phys. Lett. 97(13), 131114 (2010). [CrossRef]
  16. C.-T. Liao, M.-C. Tsai, B.-T. Liou, S.-H. Yen, and Y.-K. Kuo, “Improvement in output power of a 460 nm InGaN light-emitting diode using staggered quantum well,” J. Appl. Phys. 108(6), 063107 (2010). [CrossRef]
  17. S.-H. Park, D. Ahn, J. Park, and Y.-T. Lee, “Optical Properties of Staggered InGaN/InGaN/GaN Quantum-Well Structures with Ga- and N-Faces,” Jpn. J. Appl. Phys. 50(7), 072101 (2011). [CrossRef]
  18. R. A. Arif, Y.-K. Ee, and N. Tansu, “Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes,” Appl. Phys. Lett. 91(9), 091110 (2007). [CrossRef]
  19. R. A. Arif, H. Zhao, Y.-K. Ee, and N. Tansu, “Spontaneous Emission and Characteristics of Staggered InGaN Quantum-Well Light-Emitting Diodes,” IEEE J. Quantum Electron. 44(6), 573–580 (2008). [CrossRef]
  20. S.-H. Park, Y.-T. Lee, and J. Park, “Optical properties of type-II InGaN/GaAsN/GaN quantum wells,” Opt. Quantum Electron. 41(11-13), 779–785 (2009). [CrossRef]
  21. S.-H. Park, D. Ahn, B.-H. Koo, and J.-E. Oh, “Optical gain improvement in type-II InGaN/GaNSb/GaN quantum well structures composed of InGaN/and GaNSb layers,” Appl. Phys. Lett. 96(5), 051106 (2010). [CrossRef]
  22. J. Zhang, H. Zhao, and N. Tansu, “Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers,” Appl. Phys. Lett. 97(11), 111105 (2010). [CrossRef]
  23. T. K. Sharma and E. Towe, “Impact of strain on deep ultraviolet nitride laser and light-emitting diodes,” J. Appl. Phys. 109(8), 086104 (2011). [CrossRef]
  24. J. Zhang, H. Zhao, and N. Tansu, “Large optical gain AlGaN-delta-GaN quantum wells laser active regions in mid- and deep-ultraviolet spectral regimes,” Appl. Phys. Lett. 98(17), 171111 (2011). [CrossRef]
  25. T. K. Sharma, D. Naveh, and E. Towe, “Strain-driven light-polarization switching in deep ultraviolet nitride emitters,” Phys. Rev. B 84(3), 035305 (2011). [CrossRef]
  26. C. J. Tun, C. H. Kuo, Y. K. Fu, C. W. Kuo, M. M. C. Chou, and G. C. Chi, “Growth and characterization of c-plane AlGaN on γ-LiAlO2,” J. Cryst. Growth 311(14), 3726–3730 (2009). [CrossRef]
  27. C. W. Chen, C. J. Pan, F. C. Tsao, Y. L. Liu, G. C. Chi, C. Y. Chang, and T. H. Hsueh, “Nanostructured Surface Morphology of ZnO Grown on A-plane GaN,” ECS Trans. 25(12), 113–116 (2009). [CrossRef]
  28. J.-M. Jang, C.-R. Kim, H. Ryu, M. Razeghi, and W.-G. Jung, “ZnO 3D flower-like nanostructure synthesized on GaN epitaxial layer by simple route hydrothermal process,” J. Alloy. Comp. 463(1-2), 503–510 (2008). [CrossRef]
  29. J. Jang, J. Kim, and W. Jung, “Synthesis of ZnO nanorods on GaN epitaxial layer and Si (100) substrate using a simple hydrothermal process,” Thin Solid Films 516(23), 8524–8529 (2008). [CrossRef]
  30. B. J. Jin, S. Im, and S. Y. Lee, “Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition,” Thin Solid Films 366(1-2), 107–110 (2000). [CrossRef]
  31. T. Mukai and S. Nakamura, “Ultraviolet InGaN and GaN Single-Quantum-Well-Structure Light-Emitting Diodes Grown on Epitaxially Laterally Overgrown GaN Substrates,” Jpn. J. Appl. Phys. 38(Part 1, No. 10), 5735–5739 (1999). [CrossRef]
  32. A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. DenBaars, S. Nakamura, and U. K. Mishra, “Nonpolar InGaN∕GaN emitters on reduced-defect lateral epitaxially overgrown a-plane GaN with drive-current-independent electroluminescence emission peak,” Appl. Phys. Lett. 85(22), 5143–5145 (2004). [CrossRef]
  33. P. Kozodoy, A. Abare, R. K. Sink, M. Mack, S. Keller, S. P. DenBaars, U. K. Mishra, and D. Steigerwald, “MOCVD growth of high output power InGaN multiple quantum well light emitting diode,” Mater. Res. Soc. Symp. Proc. 468, 481–486 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited