OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 6 — Jun. 1, 2012
  • pp: 884–890
« Show journal navigation

Passively harmonic mode locked erbium doped fiber soliton laser with carbon nanotubes based saturable absorber

Chengbo Mou, Raz Arif, Aleksey Rozhin, and Sergei Turitsyn  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 6, pp. 884-890 (2012)
http://dx.doi.org/10.1364/OME.2.000884


View Full Text Article

Acrobat PDF (1481 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have proposed and demonstrated passive harmonic mode locking of an erbium doped fiber laser with soliton pulse shaping using carbon nanotubes polyvinyl alcohol film. Two types of samples prepared by using filtration and centrifugation were studied. The demonstrated fiber laser can support 10th harmonic order corresponding to 245 MHz repetition rate with an output power of ~12 mW. More importantly, all stable harmonic orders show timing jitter below 10 ps. The output pulses energies are between 25 to 56 pJ. Both samples result in the same central wavelength of output optical spectrum with similar pulse duration of ~1 ps for all harmonic orders. By using the same laser configuration, centrifugated sample exhibits slightly lower pulse chirp.

© 2012 OSA

1. Introduction

Short pulse mode locked fiber lasers are useful light sources with advantages including good beam quality, alignment free, efficient heat dissipation and simple configuration [1

1. M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009). [CrossRef]

]. This type of laser with comparable performance to the conventional bulky counterparts has many applications such as material processing, telecommunication, nonlinear science and biomedical research. Typically, fiber lasers operate at repetition rate of the order of tens of megahertz due to the relatively long laser cavity (normally in meters scale). For some applications it is desirable to have high repletion rate fiber lasers for instance, in the fields of telecommunication, spectroscopy and metrology. Passive mode locking has been extensively used and studied to generate ultrashort pulses in fiber lasers. To generate high repetition rate pulses in mode locked fiber lasers, one could employ either a short cavity (could be centimeter scale) or harmonic mode locking (HML). Although short cavity fiber laser would provide robust design and compact configuration, they do rely on short piece of high gain fiber which inherently limits the output power of the laser and makes them cumbersome to manipulate. HML, however, removes the difficulty in dealing with centimeter scale fiber devices while maintaining high repetition rate performance. A 10 GHz repetition rate soliton fiber laser was demonstrated based on HML through nonlinear amplifying loop mirror [2

2. D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fiber laser,” Electron. Lett. 27(9), 730–732 (1991). [CrossRef]

]. Nonlinear polarization rotation (NPR) based HML soliton fiber lasers were presented showing subpicosecond timing jitter around 500 MHz repetition rate [3

3. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fiber soliton ring lasers,” Electron. Lett. 29(21), 1860–1861 (1993). [CrossRef]

,4

4. S. Gray, A. B. Grudinin, W. H. Loh, and D. N. Payne, “Femtosecond harmonically mode-locked fiber laser with time jitter below 1 ps,” Opt. Lett. 20(2), 189–191 (1995). [CrossRef] [PubMed]

]. A hybrid saturable absorber based HML fiber laser was also been studied indicating the possibility of hundreds HML orders at gigahertz rate [5

5. A. B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B 14(1), 144–154 (1997). [CrossRef]

]. Stable 2.6 GHz HML fiber laser using a short piece of high gain fiber with a semiconductor saturable Bragg reflector was reported [6

6. B. C. Collings, K. Bergman, and W. H. Knox, “Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser,” Opt. Lett. 23(2), 123–125 (1998). [CrossRef] [PubMed]

]. A 3 GHz HML double-cladding fiber laser with 54 mW output power has been demonstrated recently using NPR [7

7. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009). [CrossRef] [PubMed]

].

Recently, single wall carbon nanotubes (CNT) has attracted a lot of attention due to their high optical nonlinearity and fast recovery time as a saturable absorber in a mode locked erbium doped fiber laser (EDFL) [8

8. Y. C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y. P. Zhao, T. M. Lu, G. C. Wang, and X. C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002). [CrossRef]

10

10. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004). [CrossRef]

]. Since then, various techniques and configuration have been investigated for CNT mode locker in EDFL. CNT embedded in various kinds of polymer matrix as a mode locker have been extensively studied [11

11. A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, and Y. Achiba, “Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker,” Appl. Phys. Lett. 88(5), 051118 (2006). [CrossRef]

18

18. F. Shohda, M. Nakazawa, J. Mata, and J. Tsukamoto, “A 113 fs fiber laser operating at 1.56 µm using a cascadable film-type saturable absorber with P3HT-incorporated single-wall carbon nanotubes coated on polyamide,” Opt. Express 18(9), 9712–9721 (2010). [CrossRef] [PubMed]

] including high power [19

19. Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O'Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009). [CrossRef]

], wavelength tunable [20

20. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008). [CrossRef] [PubMed]

] and pulse duration tunable [21

21. E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95(11), 111108 (2009). [CrossRef]

] lasers. Evanescent field interaction with CNT for enhanced nonlinearity in fiber laser mode locking has been reported using either a D-shaped fiber [22

22. Y. W. Song, S. Yamashita, E. Einarsson, and S. Maruyama, “All-fiber pulsed lasers passively mode locked by transferable vertically aligned carbon nanotube film,” Opt. Lett. 32(11), 1399–1401 (2007). [CrossRef] [PubMed]

,23

23. Y. W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett. 32(2), 148–150 (2007). [CrossRef] [PubMed]

] or a tapered fiber [24

24. K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett. 32(15), 2242–2244 (2007). [CrossRef] [PubMed]

,25

25. Y. W. Song, K. Morimune, S. Y. Set, and S. Yamashita, “Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers,” Appl. Phys. Lett. 90(2), 021101 (2007). [CrossRef]

]. Furthermore, liquid CNT solvent have been studied as a fiber laser mode locker by employing either a hollow fiber [26

26. S. Y. Choi, F. Rotermund, H. Jung, K. Oh, and D. I. Yeom, “Femtosecond mode-locked fiber laser employing a hollow optical fiber filled with carbon nanotube dispersion as saturable absorber,” Opt. Express 17(24), 21788–21793 (2009). [CrossRef] [PubMed]

] or a optical fiber based microchannel [27

27. A. Martinez, K. M. Zhou, I. Bennion, and S. Yamashita, “In-fiber microchannel device filled with a carbon nanotube dispersion for passive mode-lock lasing,” Opt. Express 16(20), 15425–15430 (2008). [CrossRef] [PubMed]

29

29. C. Mou, A. G. Rozhin, R. Arif, K. Zhou, and S. Turitsyn, “Polarization insensitive in-fiber mode-locker based on carbon nanotube with N-methyl-2-pryrrolidone solvent filled fiber microchamber,” Appl. Phys. Lett. 100(10), 101110 (2012). [CrossRef]

]. However, all of these CNT mode locked fiber lasers operates at fundamental repetition rate of tens of megahertz. By shortening the cavity length, a 447 MHz repetition rate EDFL was demonstrated [30

30. J. W. Nicholson and D. J. DiGiovanni, “High-repetition-frequency low-noise fiber ring lasers mode-locked with carbon nanotubes,” IEEE Photon. Technol. Lett. 20(24), 2123–2125 (2008). [CrossRef]

]. Up to 19 GHz repetition rate was recently achieved by using an extremely short cavity [31

31. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011). [CrossRef] [PubMed]

]. Moreover, HML of CNT based mode locked fiber laser is less studied. Very recently, CNT embedded polymer film was reported for HML of erbium doped fiber laser [32

32. L. Yu-Chan, C. Kuang-Nan, and L. Gong-Ru, “Passively harmonic mode-locking of fiber ring laser using a carbon-nanotube embedded PVA saturable absorber,” in OptoeElectronics and Communications Conference (OECC), 2011 16th (IEEE, 2011), pp. 788–789.

,33

33. K. Jiang, S. N. Fu, P. Shum, and C. L. Lin, “A wavelength-switchable passively harmonically mode-locked fiber laser with low pumping threshold using single-walled carbon nanotubes,” IEEE Photon. Technol. Lett. 22(11), 754–756 (2010). [CrossRef]

] for hundreds of megahertz repetition rate while evanescent field interaction based CNT mode locker can support 1.69 GHz in an EDFL [34

34. C. S. Jun, J. H. Im, S. H. Yoo, S. Y. Choi, F. Rotermund, D. I. Yeom, and B. Y. Kim, “Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes,” Opt. Express 19(20), 19775–19780 (2011). [CrossRef] [PubMed]

].

In this paper, we report investigation on CNT polyvinyl alcohol (PVA) film based HML of an EDFL using the direct contact method. Based on the different preparation procedure of the CNT PVA samples, we have evaluated the performance of filtrated and centrifugated CNT PVA film in an EDFL for passively HML. The demonstrated laser is able to show stable operation at its 10th harmonic of 245 MHz repetition rate with the output power of ~12 mW. In particular, the filtrated CNT sampled mode locked EDFL shows relatively low timing jitter of below 10 ps at almost all harmonic orders. We have also characterized the time bandwidth products (TBP) of the laser with both samples at all harmonic orders showing pulse chirp properties.

2. CNT sample preparation and characterization

Efficient absorption of CNTs at specific wavelength is determined by the band gap of the specific chiralities of semiconducting single wall CNTS. We use 0.4 mg of commercial grade CoMoCAT CNTs from SWeNT Inc (SWeNT CG200 Lot#000-0012) with carefully selecting CNTs which exhibit absorption at 1.5 µm region. The CNTs were then dissolved in 10 ml distilled water containing 8 mg of sodium dodecylbenzene sulfonate (from Sigma-Alrich) as surfactant. The solution was then dispersed by ultrasonication using a commercial kit (NanoRuptor, Diagenode) for one hour at 21 kHz and 250 W. 50% of the dispersed solution was then filtrated through a 1 µm glass microfiber filter and the remaining 50% was then subjected to ultracentifugation with Optima Max-XP ultracentifugation (Beckman Coulter) for one hour at 25000 rpm at 17 °C. Both resulting solutions were then mixed with polyvinyl alcohol (PVA) distilled water solution afterwards in the Petri dish separately. CNT PVA film saturable absorbers were then obtained after drying at room temperature in the desiccator chamber for a few days namely F-CNT PVA and C-CNT PVA for the filtration and centrifugation processed CNTs respectively. The resultant film thickness is 85 µm and 75 µm for C-CNT PVA and F-CNT PVA individually. The performance of the saturable absorbers is characterized by the absorption spectrum as shown in Fig. 1
Fig. 1 Absorption spectrum of the CNT PVA sample.
through a commercial wide band spectrometer (UV-NIR Perkin Elmer). It can be seen from Fig. 1 that the F-CNT PVA has higher absorption than C-CNT PVA sample. This means that concentration of CNTs is much higher in F-CNT/PVA sample than in C-CNT/PVA sample. As both CNT PVA samples are prepared with random orientation of CNTs, they are expected to have very low polarization dependency. Pronounced absorption peaks at 1.5 µm can be seen in the absorption spectrum for both samples.

3. Experimental setup

4. Results and discussion

As we described so far, the harmonic order is defined by the pump power and is limited around 10. Following the discussion in [34

34. C. S. Jun, J. H. Im, S. H. Yoo, S. Y. Choi, F. Rotermund, D. I. Yeom, and B. Y. Kim, “Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes,” Opt. Express 19(20), 19775–19780 (2011). [CrossRef] [PubMed]

], the evanescent field based CNT saturable absorber is able to support much higher harmonic orders. However, the CNT polymer films have the advantage of ease of manipulation and low cost. We expect higher repetition rate mode locked by the CNT polymer films could be achieved when the cavity dispersion is properly managed. Moreover, the concentration of CNT may also affect the HML. For both samples, at its maximum harmonic order, the laser is stable for a few mins, this could be because the high pump power damaged the PVA film which cause degradation of the CNT sample. For lower harmonic orders, with both samples, the laser gives stable performance over hours at the laboratory condition.

The principle of harmonic mode locking is still in debate. Grudinin et al [5

5. A. B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B 14(1), 144–154 (1997). [CrossRef]

] proposed that acoustic effect plays an effective role in laser harmonic mode locking. Kutz et al [37

37. J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998). [CrossRef]

] justified that the gain recovery could dominate the behavior of harmonic mode locking. The exact role of CNT in HML is still under investigation. Future work will address more on the mechanism of HML using CNT. We expect the demonstrated fiber laser can offer an effective platform for studying HML.

5. Conclusion

References and links

1.

M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009). [CrossRef]

2.

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fiber laser,” Electron. Lett. 27(9), 730–732 (1991). [CrossRef]

3.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fiber soliton ring lasers,” Electron. Lett. 29(21), 1860–1861 (1993). [CrossRef]

4.

S. Gray, A. B. Grudinin, W. H. Loh, and D. N. Payne, “Femtosecond harmonically mode-locked fiber laser with time jitter below 1 ps,” Opt. Lett. 20(2), 189–191 (1995). [CrossRef] [PubMed]

5.

A. B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B 14(1), 144–154 (1997). [CrossRef]

6.

B. C. Collings, K. Bergman, and W. H. Knox, “Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser,” Opt. Lett. 23(2), 123–125 (1998). [CrossRef] [PubMed]

7.

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009). [CrossRef] [PubMed]

8.

Y. C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y. P. Zhao, T. M. Lu, G. C. Wang, and X. C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett. 81(6), 975–977 (2002). [CrossRef]

9.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004). [CrossRef]

10.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004). [CrossRef]

11.

A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, and Y. Achiba, “Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker,” Appl. Phys. Lett. 88(5), 051118 (2006). [CrossRef]

12.

F. Shohda, T. Shirato, M. Nakazawa, K. Komatsu, and T. Kaino, “A passively mode-locked femtosecond soliton fiber laser at 1.5 µm with a CNT-doped polycarbonate saturable absorber,” Opt. Express 16(26), 21191–21198 (2008). [CrossRef] [PubMed]

13.

A. V. Tausenev, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, V. I. Konov, P. G. Kryukov, A. V. Konyashchenko, and E. M. Dianov, “177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes,” Appl. Phys. Lett. 92(17), 171113 (2008). [CrossRef]

14.

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38-39), 3874–3899 (2009). [CrossRef]

15.

Y. Senoo, N. Nishizawa, Y. Sakakibara, K. Sumimura, E. Itoga, H. Kataura, and K. Itoh, “Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film,” Opt. Express 17(22), 20233–20241 (2009). [CrossRef] [PubMed]

16.

C. Mou, S. Sergeyev, A. Rozhin, and S. Turistyn, “All-fiber polarization locked vector soliton laser using carbon nanotubes,” Opt. Lett. 36(19), 3831–3833 (2011). [CrossRef] [PubMed]

17.

A. Martinez, S. Uchida, Y. W. Song, T. Ishigure, and S. Yamashita, “Fabrication of Carbon nanotube poly-methyl-methacrylate composites for nonlinear photonic devices,” Opt. Express 16(15), 11337–11343 (2008). [CrossRef] [PubMed]

18.

F. Shohda, M. Nakazawa, J. Mata, and J. Tsukamoto, “A 113 fs fiber laser operating at 1.56 µm using a cascadable film-type saturable absorber with P3HT-incorporated single-wall carbon nanotubes coated on polyamide,” Opt. Express 18(9), 9712–9721 (2010). [CrossRef] [PubMed]

19.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O'Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009). [CrossRef]

20.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008). [CrossRef] [PubMed]

21.

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95(11), 111108 (2009). [CrossRef]

22.

Y. W. Song, S. Yamashita, E. Einarsson, and S. Maruyama, “All-fiber pulsed lasers passively mode locked by transferable vertically aligned carbon nanotube film,” Opt. Lett. 32(11), 1399–1401 (2007). [CrossRef] [PubMed]

23.

Y. W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett. 32(2), 148–150 (2007). [CrossRef] [PubMed]

24.

K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett. 32(15), 2242–2244 (2007). [CrossRef] [PubMed]

25.

Y. W. Song, K. Morimune, S. Y. Set, and S. Yamashita, “Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers,” Appl. Phys. Lett. 90(2), 021101 (2007). [CrossRef]

26.

S. Y. Choi, F. Rotermund, H. Jung, K. Oh, and D. I. Yeom, “Femtosecond mode-locked fiber laser employing a hollow optical fiber filled with carbon nanotube dispersion as saturable absorber,” Opt. Express 17(24), 21788–21793 (2009). [CrossRef] [PubMed]

27.

A. Martinez, K. M. Zhou, I. Bennion, and S. Yamashita, “In-fiber microchannel device filled with a carbon nanotube dispersion for passive mode-lock lasing,” Opt. Express 16(20), 15425–15430 (2008). [CrossRef] [PubMed]

28.

A. Martinez, K. M. Zhou, I. Bennion, and S. Yamashita, “Passive mode-locked lasing by injecting a carbon nanotube-solution in the core of an optical fiber,” Opt. Express 18(11), 11008–11014 (2010). [CrossRef] [PubMed]

29.

C. Mou, A. G. Rozhin, R. Arif, K. Zhou, and S. Turitsyn, “Polarization insensitive in-fiber mode-locker based on carbon nanotube with N-methyl-2-pryrrolidone solvent filled fiber microchamber,” Appl. Phys. Lett. 100(10), 101110 (2012). [CrossRef]

30.

J. W. Nicholson and D. J. DiGiovanni, “High-repetition-frequency low-noise fiber ring lasers mode-locked with carbon nanotubes,” IEEE Photon. Technol. Lett. 20(24), 2123–2125 (2008). [CrossRef]

31.

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011). [CrossRef] [PubMed]

32.

L. Yu-Chan, C. Kuang-Nan, and L. Gong-Ru, “Passively harmonic mode-locking of fiber ring laser using a carbon-nanotube embedded PVA saturable absorber,” in OptoeElectronics and Communications Conference (OECC), 2011 16th (IEEE, 2011), pp. 788–789.

33.

K. Jiang, S. N. Fu, P. Shum, and C. L. Lin, “A wavelength-switchable passively harmonically mode-locked fiber laser with low pumping threshold using single-walled carbon nanotubes,” IEEE Photon. Technol. Lett. 22(11), 754–756 (2010). [CrossRef]

34.

C. S. Jun, J. H. Im, S. H. Yoo, S. Y. Choi, F. Rotermund, D. I. Yeom, and B. Y. Kim, “Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes,” Opt. Express 19(20), 19775–19780 (2011). [CrossRef] [PubMed]

35.

S. A. Zhou, D. G. Ouzounov, and F. W. Wise, “Passive harmonic mode-locking of a soliton Yb fiber laser at repetition rates to 1.5 GHz,” Opt. Lett. 31(8), 1041–1043 (2006). [CrossRef] [PubMed]

36.

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005). [CrossRef]

37.

J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998). [CrossRef]

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(160.4330) Materials : Nonlinear optical materials

ToC Category:
Nonlinear Optical Materials

History
Original Manuscript: March 23, 2012
Revised Manuscript: May 10, 2012
Manuscript Accepted: May 14, 2012
Published: May 31, 2012

Virtual Issues
Nanocarbon for Photonics and Optoelectronics (2012) Optical Materials Express

Citation
Chengbo Mou, Raz Arif, Aleksey Rozhin, and Sergei Turitsyn, "Passively harmonic mode locked erbium doped fiber soliton laser with carbon nanotubes based saturable absorber," Opt. Mater. Express 2, 884-890 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-6-884


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron.15(1), 191–206 (2009). [CrossRef]
  2. D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fiber laser,” Electron. Lett.27(9), 730–732 (1991). [CrossRef]
  3. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fiber soliton ring lasers,” Electron. Lett.29(21), 1860–1861 (1993). [CrossRef]
  4. S. Gray, A. B. Grudinin, W. H. Loh, and D. N. Payne, “Femtosecond harmonically mode-locked fiber laser with time jitter below 1 ps,” Opt. Lett.20(2), 189–191 (1995). [CrossRef] [PubMed]
  5. A. B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B14(1), 144–154 (1997). [CrossRef]
  6. B. C. Collings, K. Bergman, and W. H. Knox, “Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser,” Opt. Lett.23(2), 123–125 (1998). [CrossRef] [PubMed]
  7. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett.34(14), 2120–2122 (2009). [CrossRef] [PubMed]
  8. Y. C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y. P. Zhao, T. M. Lu, G. C. Wang, and X. C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm,” Appl. Phys. Lett.81(6), 975–977 (2002). [CrossRef]
  9. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron.10(1), 137–146 (2004). [CrossRef]
  10. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol.22(1), 51–56 (2004). [CrossRef]
  11. A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, H. Kataura, and Y. Achiba, “Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker,” Appl. Phys. Lett.88(5), 051118 (2006). [CrossRef]
  12. F. Shohda, T. Shirato, M. Nakazawa, K. Komatsu, and T. Kaino, “A passively mode-locked femtosecond soliton fiber laser at 1.5 µm with a CNT-doped polycarbonate saturable absorber,” Opt. Express16(26), 21191–21198 (2008). [CrossRef] [PubMed]
  13. A. V. Tausenev, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, V. I. Konov, P. G. Kryukov, A. V. Konyashchenko, and E. M. Dianov, “177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes,” Appl. Phys. Lett.92(17), 171113 (2008). [CrossRef]
  14. T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38-39), 3874–3899 (2009). [CrossRef]
  15. Y. Senoo, N. Nishizawa, Y. Sakakibara, K. Sumimura, E. Itoga, H. Kataura, and K. Itoh, “Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film,” Opt. Express17(22), 20233–20241 (2009). [CrossRef] [PubMed]
  16. C. Mou, S. Sergeyev, A. Rozhin, and S. Turistyn, “All-fiber polarization locked vector soliton laser using carbon nanotubes,” Opt. Lett.36(19), 3831–3833 (2011). [CrossRef] [PubMed]
  17. A. Martinez, S. Uchida, Y. W. Song, T. Ishigure, and S. Yamashita, “Fabrication of Carbon nanotube poly-methyl-methacrylate composites for nonlinear photonic devices,” Opt. Express16(15), 11337–11343 (2008). [CrossRef] [PubMed]
  18. F. Shohda, M. Nakazawa, J. Mata, and J. Tsukamoto, “A 113 fs fiber laser operating at 1.56 µm using a cascadable film-type saturable absorber with P3HT-incorporated single-wall carbon nanotubes coated on polyamide,” Opt. Express18(9), 9712–9721 (2010). [CrossRef] [PubMed]
  19. Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O'Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95(25), 253102 (2009). [CrossRef]
  20. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008). [CrossRef] [PubMed]
  21. E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95(11), 111108 (2009). [CrossRef]
  22. Y. W. Song, S. Yamashita, E. Einarsson, and S. Maruyama, “All-fiber pulsed lasers passively mode locked by transferable vertically aligned carbon nanotube film,” Opt. Lett.32(11), 1399–1401 (2007). [CrossRef] [PubMed]
  23. Y. W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett.32(2), 148–150 (2007). [CrossRef] [PubMed]
  24. K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett.32(15), 2242–2244 (2007). [CrossRef] [PubMed]
  25. Y. W. Song, K. Morimune, S. Y. Set, and S. Yamashita, “Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers,” Appl. Phys. Lett.90(2), 021101 (2007). [CrossRef]
  26. S. Y. Choi, F. Rotermund, H. Jung, K. Oh, and D. I. Yeom, “Femtosecond mode-locked fiber laser employing a hollow optical fiber filled with carbon nanotube dispersion as saturable absorber,” Opt. Express17(24), 21788–21793 (2009). [CrossRef] [PubMed]
  27. A. Martinez, K. M. Zhou, I. Bennion, and S. Yamashita, “In-fiber microchannel device filled with a carbon nanotube dispersion for passive mode-lock lasing,” Opt. Express16(20), 15425–15430 (2008). [CrossRef] [PubMed]
  28. A. Martinez, K. M. Zhou, I. Bennion, and S. Yamashita, “Passive mode-locked lasing by injecting a carbon nanotube-solution in the core of an optical fiber,” Opt. Express18(11), 11008–11014 (2010). [CrossRef] [PubMed]
  29. C. Mou, A. G. Rozhin, R. Arif, K. Zhou, and S. Turitsyn, “Polarization insensitive in-fiber mode-locker based on carbon nanotube with N-methyl-2-pryrrolidone solvent filled fiber microchamber,” Appl. Phys. Lett.100(10), 101110 (2012). [CrossRef]
  30. J. W. Nicholson and D. J. DiGiovanni, “High-repetition-frequency low-noise fiber ring lasers mode-locked with carbon nanotubes,” IEEE Photon. Technol. Lett.20(24), 2123–2125 (2008). [CrossRef]
  31. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express19(7), 6155–6163 (2011). [CrossRef] [PubMed]
  32. L. Yu-Chan, C. Kuang-Nan, and L. Gong-Ru, “Passively harmonic mode-locking of fiber ring laser using a carbon-nanotube embedded PVA saturable absorber,” in OptoeElectronics and Communications Conference (OECC), 2011 16th (IEEE, 2011), pp. 788–789.
  33. K. Jiang, S. N. Fu, P. Shum, and C. L. Lin, “A wavelength-switchable passively harmonically mode-locked fiber laser with low pumping threshold using single-walled carbon nanotubes,” IEEE Photon. Technol. Lett.22(11), 754–756 (2010). [CrossRef]
  34. C. S. Jun, J. H. Im, S. H. Yoo, S. Y. Choi, F. Rotermund, D. I. Yeom, and B. Y. Kim, “Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes,” Opt. Express19(20), 19775–19780 (2011). [CrossRef] [PubMed]
  35. S. A. Zhou, D. G. Ouzounov, and F. W. Wise, “Passive harmonic mode-locking of a soliton Yb fiber laser at repetition rates to 1.5 GHz,” Opt. Lett.31(8), 1041–1043 (2006). [CrossRef] [PubMed]
  36. A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A71(5), 053809 (2005). [CrossRef]
  37. J. N. Kutz, B. C. Collings, K. Bergman, and W. H. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron.34(9), 1749–1757 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited