OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 1 — Jan. 1, 2013
  • pp: 47–53
« Show journal navigation

Complex strain distribution in individual facetted InGaN/GaN nano-columnar heterostructures

R. Bardoux, M. Funato, A. Kaneta, Y. Kawakami, A. Kikuchi, and K. Kishino  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 1, pp. 47-53 (2013)
http://dx.doi.org/10.1364/OME.3.000047


View Full Text Article

Acrobat PDF (1899 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Selective area growth technique is very promising for the realization of optoelectronic nano-devices based on InGaN/GaN quantum disks, as it allows precise positioning of the nano-objects on the substrate. However, this fabrication method induces a pronounced pyramidal shape of the nano-columnar heterostructures. To understand how the optical properties of these heterostructures are affected by this shape, we investigated the linear polarization of the luminescence from 0-dimensional localization centers included in their active layer. Our experimental results and our simulation show that a complex strain distribution exist in the active layer and also that quantum dot-like objects can be used to probe the local strain distribution through nano-scale heterostructures.

© 2012 OSA

1. Introduction

InGaN/GaN based heterostructures are among the most attractive for the realization of light-emitting devices in the visible spectral range [1

1. S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story (Springer-Verlag, Heidelberg, 2000).

,2

2. T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007). [CrossRef] [PubMed]

]. Indeed, their band gap energy can be tuned from infra-red to ultra-violet just by changing the In composition of their active layer. Nevertheless, it is well known that InGaN based optical devices suffer of luminous efficiency “droop” at high indium content. This droop is caused by the degradation of the crystal quality and the enhancement of the so called quantum confined stark effect (QCSE) [3

3. Y.-L. Li, Y.-R. Huang, and Y.-H. Lai, “Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness,” Appl. Phys. Lett. 91(18), 181113 (2007). [CrossRef]

,4

4. A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Lavrinovich, Yu. T. Rebane, D. V. Tarkhin, and Yu. G. Shreter, “Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs,” Semiconductors 40(5), 605–610 (2006). [CrossRef]

]. To reduce the electron-hole separation that is induced by QCSE and thus ameliorate the internal quantum efficiency (IQE) of bi-dimensional InGaN/GaN quantum well (QW) systems, various growth strategies have been proposed such as the use of non-/semi- polar InGaN QWs [5

5. M. Funato, M. Ueda, D. Inoue, Y. Kawakami, Y. Narukawa, and T. Mukai, “Experimental and theoretical considerations of polarization field direction in semipolar InGaN/GaN quantum wells,” Appl. Phys. Express 3(7), 071001–071004 (2010). [CrossRef]

7

7. D. A. Browne, E. C. Young, J. R. Lang, C. A. Hurni, and J. S. Speck, “Indium and impurity incorporation in InGaN films on polar, nonpolar, and semipolar GaN orientations grown by ammonia molecular beam epitaxy,” J. Vac. Sci. Technol. A 30(4), 041513–041521 (2012). [CrossRef]

], InGaN QWs with large overlap designs [8

8. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]

,9

9. R. A. Arif, Y.-K. Ee, and N. Tansu, “Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes,” Appl. Phys. Lett. 91(9), 091110–091113 (2007). [CrossRef]

] and of ternary template/substrate [10

10. J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantumwells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys. 110(11), 113110 (2011). [CrossRef]

,11

11. P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9 nm semipolar (112-bar2) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett. 100(2), 021104–021108 (2012). [CrossRef]

]. Another promising technique that attracts the attention of numerous teams aiming to fabricate high IQE InGaN based optoelectronic nano-devices is the embedding of InGaN/GaN QWs in nano-columnar objects. These nano-columnar heterostructures provide high light extraction efficiency, low dislocation density, stress free epilayers [12

12. K. Kishino, A. Kikuchi, H. Sekiguchi, and S. Ishizawa, “InGaN/GaN Nanocolumn LEDs Emitting from Blue to Red,” Proc. SPIE 6473, 64730T (2007). [CrossRef]

] and constitute nowadays one of the most valuable alternatives for the realization of high performance optoelectronic devices based on III-nitride compounds.

The last decades, continuous improvement of the nano-column fabrication techniques has opened the door to promising applications [13

13. S. Ishizawa, K. Kishino, R. Araki, A. Kikuchi, and S. Sugimoto, “Optically pumped green (530-560 nm) stimulated emissions from InGaN/GaN multiple-quantum-well triangular-lattice nanocolumn arrays,” Appl. Phys. Express 4(5), 055001–055004 (2011). [CrossRef]

,14

14. M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, “Growth of self-organized GaN nanostructures on Al2O3(0001) by RF-radical source molecular beam epitaxy,” Jpn. J. Appl. Phys. 36(Part 2, No. 4B), L459–L462 (1997). [CrossRef]

] and attractive fundamental physics matter [15

15. Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, and T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B 82(20), 205328 (2010). [CrossRef]

]. Among all, selective area growth (SAG) techniques constitute a major step in the fabrication techniques, because it allows accurate positioning of the nano-objects over the substrate, precise calibration of their lateral size and fine control of their emission wavelength [16

16. H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett. 96(23), 231104 (2010). [CrossRef]

]. All these characteristics are essential for the realization of optoelectronic nano-devices. However, by molecular beam epitaxy (MBE), the control of the nano-columnar morphology is a critical issue intimately linked to the interplay between diffusion and desorption of impinging atoms at the substrate surface during the growth process. It appears that in optimal growth condition, III-nitride based nano-columns elaborated by SAG techniques exhibit hexagonal cross section and pyramidal top shape composed of 6 semi-polar m-facets that form an angle of 62° to the (0001) axis [16

16. H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett. 96(23), 231104 (2010). [CrossRef]

] (see inset of Fig. 1(a)
Fig. 1 (a) Schematic representation of an individual NFQ-disk. (b) µPL spectra of an individual Q-disk1 obtained for three different excitation power densities. (b) Bird’s eye view of the sample by scanning electron microscope. (c) Image of the sample acquired by luminescence microscope.
). In the following, an InGaN/GaN QW embedded in such pyramidal nano-column will be called nano-facetted quantum disk (NFQ-disk).

It is challenging to predict how the morphology of the NFQ-disks will affect the properties of the exciton formed in the InGaN layer: a priori, radiative recombination may take place either through the facets or the edges of the pyramidal heterostructure leading to various confinement degrees of the exciton and complex polarization properties of the emitted light. However, a complete understanding of the radiative recombination processes and the excitonic confinement degree through the InGaN layer in such NFQ-disks is of first importance for the realization of state of the art light emitting nano-devices. In this report, we present optical investigation of individual InGaN/GaN NFQ-disks. So far, the correlation between the pyramidal shape of InGaN/GaN NFQ-disks and their optical properties has never been discussed; we believe that such study should open new interest for application and fundamental approaches.

2. Experiment and results

It is well known that the excitonic fine structure [21

21. R. Bardoux, T. Guillet, B. Gil, P. Lefebvre, T. Bretagnon, T. Taliercio, S. Rousset, and F. Semond, “Polarized emission from GaN/AlN quantum dots: Single-dot spectroscopy and symmetry-based theory,” Phys. Rev. B 77(23), 235315 (2008). [CrossRef]

] of semiconductor QDs or QD-like objects (such as LCs) are intimately linked to the strain distribution in their surroundings. Therefore, to obtain physical information about the strain distribution and the recombination mechanism of exciton in these pyramidal structures, we analyzed the linear polarization of the emission peaks emitted by LCs in the InGaN layer of the NFQ-disks. By analyzing systematically the linear polarization of the sharp emission peaks in the μPL spectra of about 10 NFQ-Disks, we aimed to correlate the polarization properties of the LCs to the local strain distribution through the facets of the pyramidal heterostructure. In other words, we want to use the LCs as a nano-scale optical tool to probe the local strain distribution through the facets of the pyramidal structure.

3. Finite element method calculation

4. Conclusion

In conclusion, we reported for the first time linear polarization analysis of individual InGaN/GaN NFQ-disks. Other factors such as the fluctuation of the thickness and the In composition of the InGaN layer can influence the optical properties of such NFQ-disks [25

25. M. Ueda, M. Funato, K. Kojima, Y. Kawakami, Y. Narukawa, and T. Mukai, “Polarization switching phenomena in semipolar InxGa1−xN/GaN quantum well active layers,” Phys. Rev. B 78(23), 233303 (2008). [CrossRef]

], however our results suggest that the morphology of the latter induce a complex strain distribution in the active layer. Thus, the excitonic optical properties of the InGaN active layer in the NFQ-disks cannot be simply deduced from what has been reported from bi-dimensional {1-101} InGaN/GaN QW. The particular morphology of NFQ-disks calls for deeper experimental and theoretical investigation in order to clarify the intrinsic relation between the shape and the strain distribution of the NFQ-disks. Moreover, our experimental study shows that QD or QD-like nano-objects can be considered as optical nano-tools to probe the very local structural properties through nano-scale heterostructures.

Acknowledgments

Part of this study was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science. The simulation was performed by the use of Coventor software.

References and links

1.

S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story (Springer-Verlag, Heidelberg, 2000).

2.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007). [CrossRef] [PubMed]

3.

Y.-L. Li, Y.-R. Huang, and Y.-H. Lai, “Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness,” Appl. Phys. Lett. 91(18), 181113 (2007). [CrossRef]

4.

A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Lavrinovich, Yu. T. Rebane, D. V. Tarkhin, and Yu. G. Shreter, “Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs,” Semiconductors 40(5), 605–610 (2006). [CrossRef]

5.

M. Funato, M. Ueda, D. Inoue, Y. Kawakami, Y. Narukawa, and T. Mukai, “Experimental and theoretical considerations of polarization field direction in semipolar InGaN/GaN quantum wells,” Appl. Phys. Express 3(7), 071001–071004 (2010). [CrossRef]

6.

R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol. 27(2), 024001–024015 (2012). [CrossRef]

7.

D. A. Browne, E. C. Young, J. R. Lang, C. A. Hurni, and J. S. Speck, “Indium and impurity incorporation in InGaN films on polar, nonpolar, and semipolar GaN orientations grown by ammonia molecular beam epitaxy,” J. Vac. Sci. Technol. A 30(4), 041513–041521 (2012). [CrossRef]

8.

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]

9.

R. A. Arif, Y.-K. Ee, and N. Tansu, “Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes,” Appl. Phys. Lett. 91(9), 091110–091113 (2007). [CrossRef]

10.

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantumwells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys. 110(11), 113110 (2011). [CrossRef]

11.

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9 nm semipolar (112-bar2) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett. 100(2), 021104–021108 (2012). [CrossRef]

12.

K. Kishino, A. Kikuchi, H. Sekiguchi, and S. Ishizawa, “InGaN/GaN Nanocolumn LEDs Emitting from Blue to Red,” Proc. SPIE 6473, 64730T (2007). [CrossRef]

13.

S. Ishizawa, K. Kishino, R. Araki, A. Kikuchi, and S. Sugimoto, “Optically pumped green (530-560 nm) stimulated emissions from InGaN/GaN multiple-quantum-well triangular-lattice nanocolumn arrays,” Appl. Phys. Express 4(5), 055001–055004 (2011). [CrossRef]

14.

M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, “Growth of self-organized GaN nanostructures on Al2O3(0001) by RF-radical source molecular beam epitaxy,” Jpn. J. Appl. Phys. 36(Part 2, No. 4B), L459–L462 (1997). [CrossRef]

15.

Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, and T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B 82(20), 205328 (2010). [CrossRef]

16.

H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett. 96(23), 231104 (2010). [CrossRef]

17.

A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, “InGaN/GaN Multiple Quantum Disk Nanocolumn Light-Emitting Diodes Grown on (111) Si Substrate,” Jpn. J. Appl. Phys. 43(No. 12A), L1524–L1526 (2004). [CrossRef]

18.

K. Kishino, H. Sekiguchi, and A. Kikuchi, “Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays,” J. Cryst. Growth 311(7), 2063–2068 (2009). [CrossRef]

19.

R. Bardoux, A. Kaneta, M. Funato, Y. Kawakami, A. Kikuchi, and K. Kishino, “Positive binding energy of a biexciton confined in a localization centre formed in a single InxGa1−xN/GaN quantum disk,” Phys. Rev. B 79(15), 155307 (2009). [CrossRef]

20.

J.- Shi, S. Zhang, M. Yang, S.- Zhu, and M. Zhang, “Light emission from several-atom In-N clusters in wurtzite Ga-rich InGaN alloys and InGaN/GaN strained quantum wells,” Acta Mater. 59(7), 2773–2782 (2011). [CrossRef]

21.

R. Bardoux, T. Guillet, B. Gil, P. Lefebvre, T. Bretagnon, T. Taliercio, S. Rousset, and F. Semond, “Polarized emission from GaN/AlN quantum dots: Single-dot spectroscopy and symmetry-based theory,” Phys. Rev. B 77(23), 235315 (2008). [CrossRef]

22.

M. Feneberg, F. Lipski, R. Sauer, K. Thonke, P. Brückner, B. Neubert, T. Wunderer, and F. Scholz, “Polarized light emission from semipolar GaInN quantum wells on {1-101} GaN facets,” J. Appl. Phys. 101(5), 053530–053536 (2007). [CrossRef]

23.

D. Simeonov, E. Feltin, F. Demangeot, C. Pinquier, J.-F. Carlin, R. Butté, J. Frandon, and N. Grandjean, “Strain relaxation of AlN epilayers for Stranski–Krastanov GaN/AlN quantum dots grown by metal organic vapor phase epitaxy,” J. Cryst. Growth 299(2), 254–258 (2007). [CrossRef]

24.

M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M. H. Baier, E. Kapon, B. Deveaud, and J. D. Ganière, “Probing carrier dynamics in nanostructures by picosecond cathodoluminescence,” Nature 438(7067), 479–482 (2005). [CrossRef] [PubMed]

25.

M. Ueda, M. Funato, K. Kojima, Y. Kawakami, Y. Narukawa, and T. Mukai, “Polarization switching phenomena in semipolar InxGa1−xN/GaN quantum well active layers,” Phys. Rev. B 78(23), 233303 (2008). [CrossRef]

OCIS Codes
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(300.6250) Spectroscopy : Spectroscopy, condensed matter
(160.4236) Materials : Nanomaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Nanomaterials

History
Original Manuscript: November 8, 2012
Revised Manuscript: December 9, 2012
Manuscript Accepted: December 9, 2012
Published: December 12, 2012

Citation
R. Bardoux, M. Funato, A. Kaneta, Y. Kawakami, A. Kikuchi, and K. Kishino, "Complex strain distribution in individual facetted InGaN/GaN nano-columnar heterostructures," Opt. Mater. Express 3, 47-53 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-1-47


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story (Springer-Verlag, Heidelberg, 2000).
  2. T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater.6(12), 951–956 (2007). [CrossRef] [PubMed]
  3. Y.-L. Li, Y.-R. Huang, and Y.-H. Lai, “Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness,” Appl. Phys. Lett.91(18), 181113 (2007). [CrossRef]
  4. A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Lavrinovich, Yu. T. Rebane, D. V. Tarkhin, and Yu. G. Shreter, “Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs,” Semiconductors40(5), 605–610 (2006). [CrossRef]
  5. M. Funato, M. Ueda, D. Inoue, Y. Kawakami, Y. Narukawa, and T. Mukai, “Experimental and theoretical considerations of polarization field direction in semipolar InGaN/GaN quantum wells,” Appl. Phys. Express3(7), 071001–071004 (2010). [CrossRef]
  6. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001–024015 (2012). [CrossRef]
  7. D. A. Browne, E. C. Young, J. R. Lang, C. A. Hurni, and J. S. Speck, “Indium and impurity incorporation in InGaN films on polar, nonpolar, and semipolar GaN orientations grown by ammonia molecular beam epitaxy,” J. Vac. Sci. Technol. A30(4), 041513–041521 (2012). [CrossRef]
  8. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]
  9. R. A. Arif, Y.-K. Ee, and N. Tansu, “Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes,” Appl. Phys. Lett.91(9), 091110–091113 (2007). [CrossRef]
  10. J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantumwells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110(11), 113110 (2011). [CrossRef]
  11. P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9 nm semipolar (112-bar2) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100(2), 021104–021108 (2012). [CrossRef]
  12. K. Kishino, A. Kikuchi, H. Sekiguchi, and S. Ishizawa, “InGaN/GaN Nanocolumn LEDs Emitting from Blue to Red,” Proc. SPIE6473, 64730T (2007). [CrossRef]
  13. S. Ishizawa, K. Kishino, R. Araki, A. Kikuchi, and S. Sugimoto, “Optically pumped green (530-560 nm) stimulated emissions from InGaN/GaN multiple-quantum-well triangular-lattice nanocolumn arrays,” Appl. Phys. Express4(5), 055001–055004 (2011). [CrossRef]
  14. M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, “Growth of self-organized GaN nanostructures on Al2O3(0001) by RF-radical source molecular beam epitaxy,” Jpn. J. Appl. Phys.36(Part 2, No. 4B), L459–L462 (1997). [CrossRef]
  15. Y. Inose, M. Sakai, K. Ema, A. Kikuchi, K. Kishino, and T. Ohtsuki, “Light localization characteristics in a random configuration of dielectric cylindrical columns,” Phys. Rev. B82(20), 205328 (2010). [CrossRef]
  16. H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett.96(23), 231104 (2010). [CrossRef]
  17. A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, “InGaN/GaN Multiple Quantum Disk Nanocolumn Light-Emitting Diodes Grown on (111) Si Substrate,” Jpn. J. Appl. Phys.43(No. 12A), L1524–L1526 (2004). [CrossRef]
  18. K. Kishino, H. Sekiguchi, and A. Kikuchi, “Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays,” J. Cryst. Growth311(7), 2063–2068 (2009). [CrossRef]
  19. R. Bardoux, A. Kaneta, M. Funato, Y. Kawakami, A. Kikuchi, and K. Kishino, “Positive binding energy of a biexciton confined in a localization centre formed in a single InxGa1−xN/GaN quantum disk,” Phys. Rev. B79(15), 155307 (2009). [CrossRef]
  20. J.- Shi, S. Zhang, M. Yang, S.- Zhu, and M. Zhang, “Light emission from several-atom In-N clusters in wurtzite Ga-rich InGaN alloys and InGaN/GaN strained quantum wells,” Acta Mater.59(7), 2773–2782 (2011). [CrossRef]
  21. R. Bardoux, T. Guillet, B. Gil, P. Lefebvre, T. Bretagnon, T. Taliercio, S. Rousset, and F. Semond, “Polarized emission from GaN/AlN quantum dots: Single-dot spectroscopy and symmetry-based theory,” Phys. Rev. B77(23), 235315 (2008). [CrossRef]
  22. M. Feneberg, F. Lipski, R. Sauer, K. Thonke, P. Brückner, B. Neubert, T. Wunderer, and F. Scholz, “Polarized light emission from semipolar GaInN quantum wells on {1-101} GaN facets,” J. Appl. Phys.101(5), 053530–053536 (2007). [CrossRef]
  23. D. Simeonov, E. Feltin, F. Demangeot, C. Pinquier, J.-F. Carlin, R. Butté, J. Frandon, and N. Grandjean, “Strain relaxation of AlN epilayers for Stranski–Krastanov GaN/AlN quantum dots grown by metal organic vapor phase epitaxy,” J. Cryst. Growth299(2), 254–258 (2007). [CrossRef]
  24. M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M. H. Baier, E. Kapon, B. Deveaud, and J. D. Ganière, “Probing carrier dynamics in nanostructures by picosecond cathodoluminescence,” Nature438(7067), 479–482 (2005). [CrossRef] [PubMed]
  25. M. Ueda, M. Funato, K. Kojima, Y. Kawakami, Y. Narukawa, and T. Mukai, “Polarization switching phenomena in semipolar InxGa1−xN/GaN quantum well active layers,” Phys. Rev. B78(23), 233303 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited