OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 5 — May. 1, 2013
  • pp: 645–650
« Show journal navigation

Efficient waveguide lasers in femtosecond laser inscribed double-cladding waveguides of Yb:YAG ceramics

Yuechen Jia, J. R. Vázquez de Aldana, and Feng Chen  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 5, pp. 645-650 (2013)
http://dx.doi.org/10.1364/OME.3.000645


View Full Text Article

Acrobat PDF (3060 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the fabrication of depressed double-cladding waveguides in Yb:YAG ceramics by using femtosecond (fs) laser inscription. The double-cladding structures consist of tubular central structures with 30 μm diameter and concentric larger size tubular claddings with diameters of 100-200 μm. Continuous wave laser oscillations at wavelength of 1030 nm have been realized at room temperature through optical pump at 946 nm. The obtained maximum output power of the double-cladding waveguide lasers is ~80.2 mW with a slope efficiency as high as 62.9%.

© 2013 OSA

1. Introduction

As the basic components of integrated photonics and modern telecommunication systems, optical guiding structures could confine light propagation within extremely compressed volumes with dimensions of micrometric or sub-micrometric scales, in which high optical intra-cavity intensities could be obtained compared to bulks materials [1

1. E. J. Murphy, Integrated Optical Circuits and Components: Design and Applications (Marcel Dekker, 1999).

]. As a result, laser oscillations with reduced lasing thresholds may be realized in active gain waveguide configurations, possessing comparable efficiencies with respect to bulk lasers [2

2. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011). [CrossRef]

]. Additionally, a single photonic chip can be constructed based on waveguide platforms to achieve multiple functions [3

3. F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012). [CrossRef]

,4

4. J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011). [CrossRef]

]. Since the pioneering work of Davis et al. in 1996 [5

5. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996). [CrossRef] [PubMed]

], femtosecond (fs) laser inscription technique has been emerged to be a powerful and efficient method for the construction of three-dimensional (3D) guiding structures inside numerous transparent materials, and a wide range of photonic applications have been realized [4

4. J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011). [CrossRef]

19

19. H. L. Liu, Y. C. Jia, F. Chen, and J. R. Vázquez de Aldana, “Continuous wave laser operation in Nd:GGG depressed tubular cladding waveguides produced by inscription of femtosecond laser pulses,” Opt. Mater. Express 3(2), 278–283 (2013). [CrossRef]

]. These guiding structures include the directly written waveguides (so-called Type I, with positive refractive index changes in the irradiated filament) [7

7. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007). [CrossRef]

], stress-induced waveguides (so-called Type II, typically with guiding region between the two tracks of negative index changes) [8

8. A. Ródenas, A. Benayas, J. R. Macdonald, J. Zhang, D. Y. Tang, D. Jaque, and A. K. Kar, “Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG,” Opt. Lett. 36(17), 3395–3397 (2011). [CrossRef] [PubMed]

14

14. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010). [CrossRef] [PubMed]

] and depressed cladding waveguides (located in the core surrounded by multiple low-index tracks) [15

15. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express 20(4), 3832–3843 (2012). [CrossRef] [PubMed]

19

19. H. L. Liu, Y. C. Jia, F. Chen, and J. R. Vázquez de Aldana, “Continuous wave laser operation in Nd:GGG depressed tubular cladding waveguides produced by inscription of femtosecond laser pulses,” Opt. Mater. Express 3(2), 278–283 (2013). [CrossRef]

].

Recently, rare-earth-doped yttrium aluminum garnet (YAG) ceramics have received wide attention [8

8. A. Ródenas, A. Benayas, J. R. Macdonald, J. Zhang, D. Y. Tang, D. Jaque, and A. K. Kar, “Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG,” Opt. Lett. 36(17), 3395–3397 (2011). [CrossRef] [PubMed]

11

11. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009). [CrossRef]

], mainly owing to their intriguing advantages over the single crystalline partners, such as superior optical and thermal properties, the possibility of large-size multilayers for multipurpose laser devices, higher doping concentration as well as less fabrication-consuming [20

20. J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, and A. A. Kaminskii, “Potential of ceramic YAG lasers,” Laser Phys. 10(11), 1053–1057 (2001).

22

22. A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photonics Rev. 1(2), 93–177 (2007). [CrossRef]

]. Particularly, ytterbium doped YAG (Yb:YAG) ceramics have shown a remarkable laser performance in both continuous wave (cw) and pulsed regimes [23

23. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett. 32(13), 1890–1892 (2007). [CrossRef] [PubMed]

,24

24. H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Diode-pumped mode-locked Yb:YAG ceramic laser,” Opt. Express 17(11), 8919–8925 (2009). [CrossRef] [PubMed]

], on account of combining the outstanding fluorescence properties of Yb ions, such as long fluorescence lifetime (about 3-4 times that of Nd3+ ions), absence of excited state absorptions from the metastable state, minimum quantum defect between pump and laser photons, broad emission bands, and high emission and absorption cross sections [25

25. A. Brenier and G. Boulon, “Overview of the best Yb3+-doped laser crystals,” J. Alloy. Comp. 323–324, 210–213 (2001). [CrossRef]

] with the well-known splendid properties of YAG ceramics for laser applications [22

22. A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photonics Rev. 1(2), 93–177 (2007). [CrossRef]

]. As of yet, only Type-II stress-induced waveguides with the dual-line design have been successfully fabricated with ultrafast pulses laser [9

9. T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011). [CrossRef]

,10

10. A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, T. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys., A Mater. Sci. Process. 104(1), 301–309 (2011). [CrossRef]

]. Compared to Type II waveguides, one of the advantages of the normal cladding waveguiding structures is that the large scale cross sections match the commercially available multimode fibers (with diameters of 100-400μm), which in principle offers an opportunity to realize efficient fiber-waveguide laser systems with low costs. However, as a drawback, the cladding waveguide lasers generally cannot exhibit single-modal beam properties as Type-II waveguides due to the large diameters of the guiding structures [17

17. H. L. Liu, Y. C. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012). [CrossRef] [PubMed]

19

19. H. L. Liu, Y. C. Jia, F. Chen, and J. R. Vázquez de Aldana, “Continuous wave laser operation in Nd:GGG depressed tubular cladding waveguides produced by inscription of femtosecond laser pulses,” Opt. Mater. Express 3(2), 278–283 (2013). [CrossRef]

,26

26. R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1120 (2002). [CrossRef]

]. In this work, we propose a novel design of double-cladding configurations fabricated by fs-laser inscription technique. The geometry is similar to the well-known double-clad fibers [27

27. V. Filippov, Yu. Chamorovskii, J. Kerttula, K. Golant, M. Pessa, and O. G. Okhotnikov, “Double clad tapered fiber for high power applications,” Opt. Express 16(3), 1929–1944 (2008). [CrossRef] [PubMed]

]. The large diameter pump beam may be efficiently coupled into the outer clad, and the waveguide lasers will generate only through the inner core. Under optical pumping, waveguide lasers at 1030 nm wavelength with efficient continuous wave output have been realized, showing single mode behavior.

2. Experiments in details

The Yb:YAG ceramic sample (doped by 15 at. % Yb3+ ions, obtained from Baikowski Ltd., Japan) used in this work was cut into wafers with dimensions of 10 × 10 × 2 mm3 and optically polished. The double cladding waveguide structures were fabricated by utilizing the laser facilities at the Universidad de Salamanca, as schematized in Fig. 1(a)
Fig. 1 (a) Schematic of fs-laser inscription process in Yb:YAG ceramics for the double cladding waveguides, and their cross sectional microscope images, which consist of tubular central structures with 30 μm diameter, and concentric larger size tubular claddings with diameters of (b) 200, (c) 150 and (d) 100 μm, respectively.
. We used an amplified Ti:Sapphire laser system (Spitfire, Spectra Physics, USA) generating linearly-polarized 120 fs pulses at a central wavelength of 800 nm (with 1 kHz repetition rate and 1 mJ maximum pulse energy). The value of the pulse energy used to irradiate the sample was set with a calibrated neutral density filter, a half-wave plate and a linear polarizer. The sample was placed in a computer controlled motorized 3-axes stage. The beam was focused through a 40 × microscope objective (N.A. = 0.65) at certain depth beneath the largest sample surface (dimensions of 10 × 10 mm2), and several tests at different pulse energies and scanning velocities were performed. Optical microscopy (in transmission mode) was used to evaluate the damage tracks produced in the sample and the final irradiation parameters were fixed to 0.84 μJ of pulse energy. During the irradiation the sample was moved at a constant speed of 500 μm/s in the direction perpendicular to the laser polarization and the pulse propagation that was carefully aligned with the 10-mm long edge of the sample, thus producing a damage track along the sample. The optimum values of velocity and pulse energy were chosen as a compromise between producing a large enough damage in the laser tracks (index contrast) and minimizing the formation of cracks in the sample. Many parallel scans (with ~3 μm separation between adjacent damage tracks) were performed at different depths of the sample (from bottom to top in order to avoid the shielding of the incident pulses by the previously written damage tracks) to inscribe the double-cladding waveguides, that consisted of a tubular central structure with 30 μm diameter, and a concentric larger size tubular claddings (100, 150 or 200 μm diameter). The cross section of the resulting structures in the Yb:YAG ceramic can be seen in Figs. 1(b)-1(d).

3. Results and discussion

We estimated the refractive index change (Δn) of the waveguide using the equation Δn=sin2Θm/(2n) [12

12. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010). [CrossRef] [PubMed]

] by measuring the N.A. of the waveguide. In this equation, n = 1.7180 is the substrate refractive index at 632.8 nm, and Θm is the maximum beam divergence of the light entering or leaving the waveguide. According to the measured Θm ≈9°, the effective refractive index increase can be estimated to Δn ≈ + 0.007. This value is in good agreement with that of the Nd:YAG cladding waveguides [15

15. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express 20(4), 3832–3843 (2012). [CrossRef] [PubMed]

,17

17. H. L. Liu, Y. C. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012). [CrossRef] [PubMed]

].

4. Summary

In conclusion, we have fabricated double-cladding waveguides in Yb:YAG ceramic, consisting of tubular central structures with 30 μm diameter and concentric larger size tubular claddings with diameters of 100-200 μm, by using fs laser inscription. Single-mode waveguide lasers at 1030 nm have been obtained for the three cladding diameters, at both TE and TM polarizations (optical pumping at 946 nm). A maximum slope efficiency as high as 62.9% and an output power of 80.2 mW was achieved under TM polarized optical pumping for the largest cladding size waveguide, which is benefited from the larger-area pump of the outermost cladding. This work paves a new way to construct a single-mode laser system with a direct fiber-waveguide configuration.

Acknowledgments

The work is supported by the National Natural Science Foundation of China (Nos. 11274203 and 11111130200), the Spanish Ministerio de Ciencia e Innovación (MICINN) through Consolider Program SAUUL CSD2007-00013 and project FIS2009-09522. Support from the Centro de Láseres Pulsados (CLPU) is also acknowledged.

References and links

1.

E. J. Murphy, Integrated Optical Circuits and Components: Design and Applications (Marcel Dekker, 1999).

2.

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011). [CrossRef]

3.

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012). [CrossRef]

4.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011). [CrossRef]

5.

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996). [CrossRef] [PubMed]

6.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008). [CrossRef]

7.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007). [CrossRef]

8.

A. Ródenas, A. Benayas, J. R. Macdonald, J. Zhang, D. Y. Tang, D. Jaque, and A. K. Kar, “Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG,” Opt. Lett. 36(17), 3395–3397 (2011). [CrossRef] [PubMed]

9.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011). [CrossRef]

10.

A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, T. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys., A Mater. Sci. Process. 104(1), 301–309 (2011). [CrossRef]

11.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009). [CrossRef]

12.

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010). [CrossRef] [PubMed]

13.

C. Grivas, C. Corbari, G. Brambilla, and P. G. Lagoudakis, “Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses,” Opt. Lett. 37(22), 4630–4632 (2012). [CrossRef] [PubMed]

14.

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010). [CrossRef] [PubMed]

15.

A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express 20(4), 3832–3843 (2012). [CrossRef] [PubMed]

16.

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011). [CrossRef] [PubMed]

17.

H. L. Liu, Y. C. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012). [CrossRef] [PubMed]

18.

Y. Jia, F. Chen, and J. R. Vázquez de Aldana, “Efficient continuous-wave laser operation at 1064 nm in Nd:YVO4 cladding waveguides produced by femtosecond laser inscription,” Opt. Express 20(15), 16801–16806 (2012). [CrossRef]

19.

H. L. Liu, Y. C. Jia, F. Chen, and J. R. Vázquez de Aldana, “Continuous wave laser operation in Nd:GGG depressed tubular cladding waveguides produced by inscription of femtosecond laser pulses,” Opt. Mater. Express 3(2), 278–283 (2013). [CrossRef]

20.

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, and A. A. Kaminskii, “Potential of ceramic YAG lasers,” Laser Phys. 10(11), 1053–1057 (2001).

21.

A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res. 36(1), 397–429 (2006). [CrossRef]

22.

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photonics Rev. 1(2), 93–177 (2007). [CrossRef]

23.

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett. 32(13), 1890–1892 (2007). [CrossRef] [PubMed]

24.

H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Diode-pumped mode-locked Yb:YAG ceramic laser,” Opt. Express 17(11), 8919–8925 (2009). [CrossRef] [PubMed]

25.

A. Brenier and G. Boulon, “Overview of the best Yb3+-doped laser crystals,” J. Alloy. Comp. 323–324, 210–213 (2001). [CrossRef]

26.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1120 (2002). [CrossRef]

27.

V. Filippov, Yu. Chamorovskii, J. Kerttula, K. Golant, M. Pessa, and O. G. Okhotnikov, “Double clad tapered fiber for high power applications,” Opt. Express 16(3), 1929–1944 (2008). [CrossRef] [PubMed]

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3390) Lasers and laser optics : Laser materials processing
(230.7370) Optical devices : Waveguides

ToC Category:
Laser Materials Processing

History
Original Manuscript: March 15, 2013
Revised Manuscript: April 9, 2013
Manuscript Accepted: April 16, 2013
Published: April 19, 2013

Virtual Issues
Optical Ceramics (2013) Optical Materials Express

Citation
Yuechen Jia, J. R. Vázquez de Aldana, and Feng Chen, "Efficient waveguide lasers in femtosecond laser inscribed double-cladding waveguides of Yb:YAG ceramics," Opt. Mater. Express 3, 645-650 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-5-645


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. J. Murphy, Integrated Optical Circuits and Components: Design and Applications (Marcel Dekker, 1999).
  2. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011). [CrossRef]
  3. F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photonics Rev.6(5), 622–640 (2012). [CrossRef]
  4. J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A208(2), 276–283 (2011). [CrossRef]
  5. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  6. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  7. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007). [CrossRef]
  8. A. Ródenas, A. Benayas, J. R. Macdonald, J. Zhang, D. Y. Tang, D. Jaque, and A. K. Kar, “Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG,” Opt. Lett.36(17), 3395–3397 (2011). [CrossRef] [PubMed]
  9. T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B103(1), 1–4 (2011). [CrossRef]
  10. A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, T. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, “Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes,” Appl. Phys., A Mater. Sci. Process.104(1), 301–309 (2011). [CrossRef]
  11. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009). [CrossRef]
  12. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18(15), 16035–16041 (2010). [CrossRef] [PubMed]
  13. C. Grivas, C. Corbari, G. Brambilla, and P. G. Lagoudakis, “Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses,” Opt. Lett.37(22), 4630–4632 (2012). [CrossRef] [PubMed]
  14. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. M. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010). [CrossRef] [PubMed]
  15. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express20(4), 3832–3843 (2012). [CrossRef] [PubMed]
  16. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett.36(9), 1587–1589 (2011). [CrossRef] [PubMed]
  17. H. L. Liu, Y. C. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance,” Opt. Express20(17), 18620–18629 (2012). [CrossRef] [PubMed]
  18. Y. Jia, F. Chen, and J. R. Vázquez de Aldana, “Efficient continuous-wave laser operation at 1064 nm in Nd:YVO4 cladding waveguides produced by femtosecond laser inscription,” Opt. Express20(15), 16801–16806 (2012). [CrossRef]
  19. H. L. Liu, Y. C. Jia, F. Chen, and J. R. Vázquez de Aldana, “Continuous wave laser operation in Nd:GGG depressed tubular cladding waveguides produced by inscription of femtosecond laser pulses,” Opt. Mater. Express3(2), 278–283 (2013). [CrossRef]
  20. J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, and A. A. Kaminskii, “Potential of ceramic YAG lasers,” Laser Phys.10(11), 1053–1057 (2001).
  21. A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. L. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res.36(1), 397–429 (2006). [CrossRef]
  22. A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photonics Rev.1(2), 93–177 (2007). [CrossRef]
  23. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett.32(13), 1890–1892 (2007). [CrossRef] [PubMed]
  24. H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Diode-pumped mode-locked Yb:YAG ceramic laser,” Opt. Express17(11), 8919–8925 (2009). [CrossRef] [PubMed]
  25. A. Brenier and G. Boulon, “Overview of the best Yb3+-doped laser crystals,” J. Alloy. Comp.323–324, 210–213 (2001). [CrossRef]
  26. R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum.73(3), 1117–1120 (2002). [CrossRef]
  27. V. Filippov, Yu. Chamorovskii, J. Kerttula, K. Golant, M. Pessa, and O. G. Okhotnikov, “Double clad tapered fiber for high power applications,” Opt. Express16(3), 1929–1944 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited