OSA's Digital Library




  • Editor: Alex Gaeta
  • Vol. 1, Iss. 1 — Jul. 2014
  • pp: 32–38

Radiative cooling of solar cells

Linxiao Zhu, Aaswath Raman, Ken Xingze Wang, Marc Abou Anoma, and Shanhui Fan  »View Author Affiliations

Optica, Vol. 1, Issue 1, pp. 32-38 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1150 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Standard solar cells heat up under sunlight. The resulting increased temperature of the solar cell has adverse consequences on both its efficiency and its reliability. We introduce a general approach to radiatively lower the operating temperature of a solar cell through sky access, while maintaining its solar absorption. We first present an ideal scheme for the radiative cooling of solar cells. For an example case of a bare crystalline silicon solar cell, we show that the ideal scheme can passively lower its operating temperature by 18.3 K. We then demonstrate a microphotonic design based on real material properties that approaches the performance of the ideal scheme. We also show that the radiative cooling effect is substantial, even in the presence of significant convection and conduction and parasitic solar absorption in the cooling layer, provided that we design the cooling layer to be sufficiently thin.

© 2014 Optical Society of America

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(230.5298) Optical devices : Photonic crystals
(290.6815) Scattering : Thermal emission

Original Manuscript: March 31, 2014
Revised Manuscript: May 13, 2014
Manuscript Accepted: May 17, 2014
Published: July 22, 2014

Linxiao Zhu, Aaswath Raman, Ken Xingze Wang, Marc Abou Anoma, and Shanhui Fan, "Radiative cooling of solar cells," Optica 1, 32-38 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W.  Shockley, H. J.  Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961). [CrossRef]
  2. R.  Santbergen, R.  van Zolingen, “The absorption factor of crystalline silicon PV cells: a numerical and experimental study,” Sol. Energy Mater. Sol. Cells 92, 432–444 (2008). [CrossRef]
  3. R.  Santbergen, J.  Goud, M.  Zeman, J.  van Roosmalen, R.  van Zolingen, “The AM1.5 absorption factor of thin-film solar cells,” Sol. Energy Mater. Sol. Cells 94, 715–723 (2010). [CrossRef]
  4. J.  Ingersoll, “Simplified calculation of solar cell temperatures in terrestrial photovoltaic arrays,” J. Sol. Energy Eng. 108, 95–101 (1986). [CrossRef]
  5. A.  Jones, C.  Underwood, “A thermal model for photovoltaic systems,” Sol. Energy 70, 349–359 (2001). [CrossRef]
  6. M. W.  Davis, A. H.  Fanney, B. P.  Dougherty, “Prediction of building integrated photovoltaic cell temperatures,” J. Sol. Energy Eng. 123, 200–210 (2001). [CrossRef]
  7. E.  Skoplaki, J.  Palyvos, “On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations,” Sol. Energy 83, 614–624 (2009). [CrossRef]
  8. D.  Otth, R. E.  Ross, “Assessing photovoltaic module degradation and lifetime from long term environmental tests,” Proceedings of the 1983 Institute of Environmental Sciences 29th Annual Meeting, Los Angeles, CA, April19–21 1983, pp. 121–126.
  9. A.  Luque, G.  Araújo, Solar Cells and Optics for Photovoltaic Concentration, Adam Hilger Series on Optics and Optoelectronics (Institute of Physics Publishing, 1989).
  10. H.  Teo, P.  Lee, M.  Hawlader, “An active cooling system for photovoltaic modules,” Appl. Energy 90, 309–315 (2012). [CrossRef]
  11. G.  Mittelman, A.  Kribus, A.  Dayan, “Solar cooling with concentrating photovoltaic/thermal (CPVT) systems,” Energy Convers. Manage. 48, 2481–2490 (2007). [CrossRef]
  12. A.  Akbarzadeh, T.  Wadowski, “Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation,” Appl. Therm. Eng. 16, 81–87 (1996). [CrossRef]
  13. A.  Royne, C.  Dey, D.  Mills, “Cooling of photovoltaic cells under concentrated illumination: a critical review,” Sol. Energy Mater. Sol. Cells 86, 451–483 (2005). [CrossRef]
  14. F.  Trombe, “Perspectives sur l’utilisation des rayonnements solaires et terrestres dans certaines régions du monde,” Rev. Gen. Therm. 6, 1285–1314 (1967).
  15. S.  Catalanotti, V.  Cuomo, G.  Piro, D.  Ruggi, V.  Silvestrini, G.  Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17, 83–89 (1975). [CrossRef]
  16. B.  Bartoli, S.  Catalanotti, B.  Coluzzi, V.  Cuomo, V.  Silvestrini, G.  Troise, “Nocturnal and diurnal performances of selective radiators,” Appl. Energy 3, 267–286 (1977). [CrossRef]
  17. A.  Harrison, M.  Walton, “Radiative cooling of TiO2 white paint,” Sol. Energy 20, 185–188 (1978). [CrossRef]
  18. C. G.  Granqvist, A.  Hjortsberg, “Letter to the editor,” Sol. Energy 24, 216 (1980). [CrossRef]
  19. C. G.  Granqvist, “Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52, 4205–4220 (1981). [CrossRef]
  20. P.  Berdahl, “Radiative cooling with MgO and/or LiF layers,” Appl. Opt. 23, 370–372 (1984). [CrossRef]
  21. G.  Smith, “Amplified radiative cooling via optimised combinations of aperture geometry and spectral emittance profiles of surfaces and the atmosphere,” Sol. Energy Mater. Sol. Cells 93, 1696–1701 (2009). [CrossRef]
  22. A. R.  Gentle, G. B.  Smith, “Radiative heat pumping from the Earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010). [CrossRef]
  23. A.  Gentle, J.  Aguilar, G.  Smith, “Optimized cool roofs: integrating albedo and thermal emittance with R-value,” Sol. Energy Mater. Sol. Cells 95, 3207–3215 (2011). [CrossRef]
  24. T. M.  Nilsson, G. A.  Niklasson, C. G.  Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28, 175–193 (1992). [CrossRef]
  25. T. M.  Nilsson, G. A.  Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37, 93–118 (1995). [CrossRef]
  26. E.  Rephaeli, A.  Raman, S.  Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).
  27. L.  Zhu, A.  Raman, S.  Fan, “Color-preserving daytime radiative cooling,” Appl. Phys. Lett. 103, 223902 (2013). [CrossRef]
  28. T.  Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater. 2, 96–102 (2010). [CrossRef]
  29. A.  Goetzberger, J.  Knobloch, B.  Voss, “High efficiency solar cells,” in Crystalline Silicon Solar Cells (Wiley, 1998), Chap. 6, p. 122.
  30. C.  Fu, Z.  Zhang, “Nanoscale radiation heat transfer for silicon at different doping levels,” Int. J. Heat Mass Transfer 49, 1703–1718 (2006). [CrossRef]
  31. V.  Liu, S.  Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012). [CrossRef]
  32. S. D.  Lord, “A new software tool for computing Earth’s atmospheric transmission of near- and far-infrared radiation,” NASA Technical Memorandum 103957 (1992).
  33. Gemini Observatory, IR Transmission Spectra, http://www.gemini.edu/?q=node/10789 .
  34. W.  Haynes, CRC Handbook of Chemistry and Physics, 94th ed. (Taylor & Francis, 2013).
  35. United States Department of Energy, United States Residential-Scale 30-Meter Wind Maps, http://apps2.eere.energy.gov/wind/windexchange/windmaps/residential_scale.asp .
  36. E.  Peterson, J. P.  Hennessey, “On the use of power laws for estimates of wind power potential,” J. Appl. Meteorol. 17, 390–394 (1978). [CrossRef]
  37. C. R.  Kurkjian, W. R.  Prindle, “Perspectives on the history of glass composition,” J. Am. Ceram. Soc. 81, 795–813 (1998). [CrossRef]
  38. C.-M.  Hsu, S. T.  Connor, M. X.  Tang, Y.  Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93, 133109 (2008). [CrossRef]
  39. S.  Wang, B. D.  Weil, Y.  Li, K. X.  Wang, E.  Garnett, S.  Fan, Y.  Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13, 4393–4398 (2013). [CrossRef]
  40. H.  Toyota, K.  Takahara, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys. 40, L747–L749 (2001). [CrossRef]
  41. Y.-B.  Park, H.  Im, M.  Im, Y.-K.  Choi, “Self-cleaning effect of highly water-repellent microshell structures for solar cell applications,” J. Mater. Chem. 21, 633 (2011). [CrossRef]
  42. J.  Zhu, C.-M.  Hsu, Z.  Yu, S.  Fan, Y.  Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010). [CrossRef]
  43. M.  Nosonovsky, B.  Bhushan, “Roughness-induced superhydrophobicity: a way to design non-adhesive surfaces,” J. Phys. Condens. Matter 20, 225009 (2008). [CrossRef]
  44. E.  Hosono, S.  Fujihara, I.  Honma, H.  Zhou, “Superhydrophobic perpendicular nanopin film by the bottom-up process,” J. Am. Chem. Soc. 127, 13458–13459 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Supplement 1: PDF (421 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited