OSA's Digital Library




  • Editor: Alex Gaeta
  • Vol. 1, Iss. 1 — Jul. 2014
  • pp: 45–63

Third-generation femtosecond technology

Hanieh Fattahi, Helena G. Barros, Martin Gorjan, Thomas Nubbemeyer, Bidoor Alsaif, Catherine Y. Teisset, Marcel Schultze, Stephan Prinz, Matthias Haefner, Moritz Ueffing, Ayman Alismail, Lénárd Vámos, Alexander Schwarz, Oleg Pronin, Jonathan Brons, Xiao Tao Geng, Gunnar Arisholm, Marcelo Ciappina, Vladislav S. Yakovlev, Dong-Eon Kim, Abdallah M. Azzeer, Nicholas Karpowicz, Dirk Sutter, Zsuzsanna Major, Thomas Metzger, and Ferenc Krausz  »View Author Affiliations

Optica, Vol. 1, Issue 1, pp. 45-63 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2880 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Femtosecond pulse generation was pioneered four decades ago using mode-locked dye lasers, which dominated the field for the following 20 years. Dye lasers were then replaced with titanium-doped sapphire (Ti:Sa) lasers, which have had their own two-decade reign. Broadband optical parametric amplifiers (OPAs) appeared on the horizon more than 20 years ago but have been lacking powerful, cost-effective picosecond pump sources for a long time. Diode-pumped ytterbium-doped solid-state lasers are about to change this state of affairs profoundly. They are able to deliver 1 ps scale pulses at kilowatt-scale average power levels, which, in thin-disk lasers, may come in combination with terawatt-scale peak powers. Broadband OPAs pumped by these sources hold promise for surpassing the performance of current femtosecond systems so dramatically as to justify referring to them as the next generation. Third-generation femtosecond technology (3FST) offers the potential for femtosecond light tunable over several octaves, multi-terawatt few-cycle pulses, and synthesized multi-octave light transients. Unique tunability, temporal confinement, and waveform variety in combination with unprecedented average powers will extend nonlinear optics and laser spectroscopy to previously inaccessible wavelength domains, ranging from the far IR to the x-ray regime. Here we review the underlying concepts, technologies, and proof-of-principle experiments. A conceptual design study of a prototypical tunable and wideband source demonstrates the potential of 3FST for pushing the frontiers of femtosecond and attosecond science.

© 2014 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(320.7160) Ultrafast optics : Ultrafast technology
(140.3615) Lasers and laser optics : Lasers, ytterbium
(230.4480) Optical devices : Optical amplifiers

Original Manuscript: May 23, 2014
Revised Manuscript: June 25, 2014
Manuscript Accepted: June 26, 2014
Published: July 22, 2014

Hanieh Fattahi, Helena G. Barros, Martin Gorjan, Thomas Nubbemeyer, Bidoor Alsaif, Catherine Y. Teisset, Marcel Schultze, Stephan Prinz, Matthias Haefner, Moritz Ueffing, Ayman Alismail, Lénárd Vámos, Alexander Schwarz, Oleg Pronin, Jonathan Brons, Xiao Tao Geng, Gunnar Arisholm, Marcelo Ciappina, Vladislav S. Yakovlev, Dong-Eon Kim, Abdallah M. Azzeer, Nicholas Karpowicz, Dirk Sutter, Zsuzsanna Major, Thomas Metzger, and Ferenc Krausz, "Third-generation femtosecond technology," Optica 1, 45-63 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. P. Ippen, C. V. Shank, A. Dienes, “Passive mode locking of the cw dye laser,” Appl. Phys. Lett. 21, 348–350 (1972). [CrossRef]
  2. J. P. Letouzey, S. O. Sari, “Continuous pulse train dye laser using an open flowing passive absorber,” Appl. Phys. Lett. 23, 311–313 (1973). [CrossRef]
  3. C. V. Shank, E. P. Ippen, “Subpicosecond kilowatt pulses from a mode-locked cw dye laser,” Appl. Phys. Lett. 24, 373–375 (1974). [CrossRef]
  4. R. L. Fork, B. I. Greene, C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode-locking,” Appl. Phys. Lett. 38, 671–672 (1981). [CrossRef]
  5. W. Dietel, E. Dopel, D. Kuhlke, B. Wilhelmi, “Pulses in the femtosecond range from a cw dye ring laser in the colliding pulse mode-locking (CPM) regime with down-chirp,” Opt. Commun. 43, 433–436 (1982). [CrossRef]
  6. W. Dietel, J. J. Fontaine, J. C. Diels, “Intracavity pulse-compression with glass: a new method of generating pulses shorter than 60 fsec,” Opt. Lett. 8, 4–6 (1983). [CrossRef]
  7. J. A. Valdmanis, R. L. Fork, J. P. Gordon, “Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain,” Opt. Lett. 10, 131–133 (1985). [CrossRef]
  8. W. H. Knox, M. C. Downer, R. L. Fork, C. V. Shank, “Amplified femtosecond optical pulses and continuum generation at 5-kHz repetition rate,” Opt. Lett. 9, 552–554 (1984). [CrossRef]
  9. C. Rolland, P. B. Corkum, “Amplification of 70-fs-pulses in a high repetition rate XeCl pumped dye-laser amplifier,” Opt. Commun. 59, 64–68 (1986). [CrossRef]
  10. W. Kaiser, D. H. Auston, K. B. Eisenthal, R. M. Hochstrasser, C. K. Johnson, A. Laubereau, D. Linde, A. von der Seilmeier, C. V. Shank, W. Zinth, Ultrashort Laser Pulses: Generation and Applications (Springer, 1993).
  11. A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A 104, 5660–5694 (2000). [CrossRef]
  12. P. F. Moulton, “Spectroscopic and laser characteristics of Ti-Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986). [CrossRef]
  13. V. Petričević, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988). [CrossRef]
  14. E. Sorokin, S. Naumov, I. T. Sorokina, “Ultrabroadband infrared solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 690–712 (2005). [CrossRef]
  15. D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985). [CrossRef]
  16. D. E. Spence, P. N. Kean, W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991). [CrossRef]
  17. S. Backus, C. G. Durfee, G. Mourou, H. C. Kapteyn, M. M. Murnane, “0.2-TW laser system at 1  kHz,” Opt. Lett. 22, 1256–1258 (1997). [CrossRef]
  18. Y. Nabekawa, Y. Kuramoto, T. Togashi, T. Sekikawa, S. Watanabe, “Generation of 0.66-TW pulses at 1  kHz by a Ti:sapphire laser,” Opt. Lett. 23, 1384–1386 (1998). [CrossRef]
  19. R. Szipöcs, K. Ferencz, C. Spielmann, F. Krausz, “Chirped multilayer coatings for broad-band dispersion control in femtosecond lasers,” Opt. Lett. 19, 201–203 (1994). [CrossRef]
  20. M. Nisoli, S. DeSilvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, F. Krausz, “Compression of high-energy laser pulses below 5  fs,” Opt. Lett. 22, 522–524 (1997). [CrossRef]
  21. S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, C. Spielmann, F. Krausz, K. Ferencz, “Generation of O.1-TW 5-fs optical pulses at a 1-kHz repetition rate,” Opt. Lett. 22, 1562–1564 (1997). [CrossRef]
  22. F. Krausz, M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009). [CrossRef]
  23. G. A. Mourou, T. Tajima, S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006). [CrossRef]
  24. Y. Chu, X. Liang, L. Yu, Y. Xu, L. Xu, L. Ma, X. Lu, Y. Liu, Y. Leng, R. Li, Z. Xu, “High-contrast 2.0 petawatt Ti:sapphire laser system,” Opt. Express 21, 29231–29239 (2013). [CrossRef]
  25. S. Hädrich, A. Klenke, A. Hoffmann, T. Eidam, T. Gottschall, J. Rothhardt, J. Limpert, A. Tünnermann, “Nonlinear compression to sub-30-fs, 0.5  mJ pulses at 135  W of average power,” Opt. Lett. 38, 3866–3869 (2013). [CrossRef]
  26. A. Dubietis, G. Jonusauskas, A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88, 437–440 (1992). [CrossRef]
  27. D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7  ns to 150  fs,” Appl. Phys. Lett. 64, 3071–3073 (1994). [CrossRef]
  28. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995). [CrossRef]
  29. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998). [CrossRef]
  30. C. Radzewicz, Y. B. Band, G. W. Pearson, J. S. Krasinski, “Short pulse nonlinear frequency conversion without group-velocity-mismatch broadening,” Opt. Commun. 117, 295–302 (1995). [CrossRef]
  31. S. M. Saltiel, K. Koynov, B. Agate, W. Sibbett, “Second-harmonic generation with focused beams under conditions of large group-velocity mismatch,” J. Opt. Soc. Am. B 21, 591–598 (2004). [CrossRef]
  32. C. Y. Chien, G. Korn, J. S. Coe, J. Squier, G. Mourou, “Highly efficient second-harmonic generation of ultraintense Nd-glass laser pulses,” Opt. Lett. 20, 353–355 (1995). [CrossRef]
  33. P. Rußbüldt, J. Weitenberg, T. Sartorius, G. Rotarius, H. D. Hoffmann, R. Poprawe, “Ytterbium Innoslab amplifiers—the high average power approach of ultrafast lasers,” AIP Conf. Proc. 1462, 120–123 (2012). [CrossRef]
  34. P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, R. Poprawe, “400  W Yb:YAG Innoslab fs-amplifier,” Opt. Express 17, 12230–12245 (2009). [CrossRef]
  35. O. G. Peterson, S. A. Tuccio, B. B. Snavely, “CW operation of an organic dye solution laser,” Appl. Phys. Lett. 17, 245–247 (1970). [CrossRef]
  36. M. DiDomenico, “Small-signal analysis of internal (coupling-type) modulation of lasers,” J. Appl. Phys. 35, 2870–2876 (1964). [CrossRef]
  37. L. E. Hargrove, R. L. Fork, M. A. Pollack, “Locking of He-Ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 4–5 (1964). [CrossRef]
  38. A. Yariv, “Internal modulation in multimode laser oscillators,” J. Appl. Phys. 36, 388–391 (1965). [CrossRef]
  39. E. P. Ippen, C. V. Shank, “Dynamic spectroscopy and subpicosecond pulse compression,” Appl. Phys. Lett. 27, 488–490 (1975). [CrossRef]
  40. J. C. Diels, E. Vanstryland, G. Benedict, “Generation and measurement of 200 femtosecond optical pulses,” Opt. Commun. 25, 93–96 (1978). [CrossRef]
  41. E. B. Treacy, “Measurement of picosecond pulse substructure using compression techniques,” Appl. Phys. Lett. 14, 112–114 (1969). [CrossRef]
  42. R. L. Fork, C. H. B. Cruz, P. C. Becker, C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 12, 483–485 (1987). [CrossRef]
  43. C. V. Shank, “Generation of ultrashort optical pulses,” Top. Appl. Phys. 60, 5–34 (1988).
  44. J. C. Diels, “Femtosecond dye lasers,” in Dye Laser Principles, F. J. Duarte, L. W. Hillman, eds. (Academic, 1990), Chap. 3, pp. 41–132.
  45. P. M. W. French, “The generation of ultrashort laser pulses,” Rep. Prog. Phys. 58, 169–262 (1995). [CrossRef]
  46. U. Keller, G. W. Thooft, W. H. Knox, J. E. Cunningham, “Femtosecond pulses from a continuously self-starting passively mode-locked Ti:sapphire laser,” Opt. Lett. 16, 1022–1024 (1991). [CrossRef]
  47. L. Spinelli, B. Couillaud, N. Goldblatt, D. K. Negus, “Starting and generation of sub-100  fs pulses in Ti:Al2O3 by self-focusing,” in Conference on Lasers and Electro-Optics, J. Bufton, A. Glass, T. Hsu, W. Krupke, eds., Vol.  10 of OSA Technical Digest (Optical Society of America, 1991), paper CPD7.
  48. M. Piche, “Beam reshaping and self-mode-locking in nonlinear laser resonators,” Opt. Commun. 86, 156–160 (1991). [CrossRef]
  49. T. Brabec, C. Spielmann, P. F. Curley, F. Krausz, “Kerr lens mode-locking,” Opt. Lett. 17, 1292–1294 (1992). [CrossRef]
  50. H. A. Haus, J. G. Fujimoto, E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28, 2086–2096 (1992). [CrossRef]
  51. V. P. Kalosha, M. Muller, J. Herrmann, S. Gatz, “Spatiotemporal model of femtosecond pulse generation in Kerr-lens mode-locked solid-state lasers,” J. Opt. Soc. Am. B 15, 535–550 (1998). [CrossRef]
  52. R. Szipöcs, A. Stingl, C. Spielmann, F. Krausz, “Chirped dielectric mirrors for dispersion control in femtosecond laser systems,” Proc. SPIE 2377, 11–22 (1995). [CrossRef]
  53. A. Stingl, M. Lenzner, C. Spielmann, F. Krausz, R. Szipöcs, “Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser,” Opt. Lett. 20, 602–604 (1995). [CrossRef]
  54. A. Kasper, K. J. Witte, “10-fs pulse generation from a unidirectional Kerr-lens mode-locked Ti:sapphire ring laser,” Opt. Lett. 21, 360–362 (1996). [CrossRef]
  55. T. Brabec, F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000). [CrossRef]
  56. P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988). [CrossRef]
  57. J. V. Rudd, G. Korn, S. Kane, J. Squier, G. Mourou, P. Bado, “Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti-Al2O3 regenerative amplifier,” Opt. Lett. 18, 2044–2046 (1993). [CrossRef]
  58. O. E. Martinez, “Design of high-power ultrashort pulse amplifiers by expansion and recompression,” IEEE J. Quantum Electron. 23, 1385–1387 (1987). [CrossRef]
  59. C. P. J. Barty, G. Korn, F. Raksi, A. C. Tien, K. R. Wilson, V. V. Yakovlev, C. Rose-Petruck, J. Squier, K. Yamakawa, “Regenerative pulse shaping and amplification of ultrabroadband optical pulses,” Opt. Lett. 21, 219–221 (1996). [CrossRef]
  60. M. Hentschel, Z. Cheng, F. Krausz, C. Spielmann, “Generation of 0.1-TW optical pulses with a single-stage Ti:sapphire amplifier at a 1-kHz repetition rate,” Appl. Phys. B 70, S161–S164 (2000). [CrossRef]
  61. J. Z. H. Yang, B. C. Walker, “0.09-terawatt pulses with a 31% efficient, kilohertz repetition-rate Ti:sapphire regenerative amplifier,” Opt. Lett. 26, 453–455 (2001). [CrossRef]
  62. S. Backus, R. Bartels, S. Thompson, R. Dollinger, M. Murnane, H. Kapteyn, “High efficiency, single-stage, 7  kHz, high average power ultrafast laser system,” in Conference on Lasers and Electro-Optics, Baltimore, Maryland, 2001.
  63. D. M. Gaudiosi, A. L. Lytle, P. Kohl, M. M. Murnane, H. C. Kapteyn, S. Backus, “11-W average power Ti:sapphire amplifier system using downchirped pulse amplification,” Opt. Lett. 29, 2665–2667 (2004). [CrossRef]
  64. J. Huve, T. Haarlammert, T. Steinbruck, J. Kutzner, G. Tsilimis, H. Zacharias, “High-flux high harmonic soft x-ray generation up to 10  kHz repetition rate,” Opt. Commun. 266, 261–265 (2006). [CrossRef]
  65. T. Imahoko, N. Inoue, K. Takasago, T. Sumiyoshi, H. Sekita, M. Obara, “Development of a 50  kHz, 13  W Ti:sapphire femtosecond regenerative amplifier,” in Pacific Rim Conference on Lasers and Electro-Optics (IEEE, 2007), pp. 774–775.
  66. S. Chen, M. Chini, H. Wang, C. Yun, H. Mashiko, Y. Wu, Z. Chang, “Carrier-envelope phase stabilization and control of 1  kHz, 6  mJ, 30  fs laser pulses from a Ti:sapphire regenerative amplifier,” Appl. Opt. 48, 5692–5695 (2009). [CrossRef]
  67. I. Matsushima, H. Yashiro, T. Tomie, “10  kHz 40  W Ti:sapphire regenerative ring amplifier,” Opt. Lett. 31, 2066–2068 (2006). [CrossRef]
  68. M. Nisoli, S. DeSilvestri, O. Svelto, “Generation of high energy 10  fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996). [CrossRef]
  69. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008). [CrossRef]
  70. A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9, 242 (2007). [CrossRef]
  71. S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, K. Midorikawa, “Generation of 5.0  fs, 5.0  mJ pulses at 1  kHz using hollow-fiber pulse compression,” Opt. Lett. 35, 1887–1889 (2010). [CrossRef]
  72. W. Schweinberger, A. Sommer, E. Bothschafter, J. Li, F. Krausz, R. Kienberger, M. Schultze, “Waveform-controlled near-single-cycle milli-joule laser pulses generate sub-10  nm extreme ultraviolet continua,” Opt. Lett. 37, 3573–3575 (2012). [CrossRef]
  73. U. Morgner, F. X. Kartner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999). [CrossRef]
  74. C. C. Wang, G. W. Racette, “Measurement of parametric gain accompanying optical difference frequency generation,” Appl. Phys. Lett. 6, 169–171 (1965). [CrossRef]
  75. S. E. Harris, M. K. Oshman, R. L. Byer, “Observation of tunable optical parametric fluorescence,” Phys. Rev. Lett. 18, 732–734 (1967). [CrossRef]
  76. C. Chen, B. Wu, A. Jiang, G. You, “A new-type ultraviolet SHG crystal: β-BaB2O4,” Sci. Sin. Ser. B 28, 235–243 (1985).
  77. T. Wilhelm, J. Piel, E. Riedle, “Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,” Opt. Lett. 22, 1494–1496 (1997). [CrossRef]
  78. E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, W. Zinth, “Generation of 10 to 50  fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71, 457–465 (2000). [CrossRef]
  79. R. Butkus, R. Danielius, A. Dubietis, A. Piskarskas, A. Stabinis, “Progress in chirped pulse optical parametric amplifiers,” Appl. Phys. B 79, 693–700 (2004). [CrossRef]
  80. A. Dubietis, R. Butkus, A. P. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12, 163–172 (2006). [CrossRef]
  81. S. Witte, K. S. E. Eikema, “Ultrafast optical parametric chirped-pulse amplification,” IEEE J. Sel. Top. Quantum Electron. 18, 296–307 (2012). [CrossRef]
  82. A. Vaupel, N. Bodnar, B. Webb, L. Shah, M. Richardson, “Concepts, performance review, and prospects of table-top, few-cycle optical parametric chirped-pulse amplification,” Opt. Eng. 53, 051507 (2014). [CrossRef]
  83. G. Cerullo, S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1–18 (2003). [CrossRef]
  84. A. Baltuska, T. Fuji, T. Kobayashi, “Visible pulse compression to 4  fs by optical parametric amplification and programmable dispersion control,” Opt. Lett. 27, 306–308 (2002). [CrossRef]
  85. D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34, 2459–2461 (2009). [CrossRef]
  86. I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,” Opt. Commun. 144, 125–133 (1997). [CrossRef]
  87. I. N. Ross, P. Matousek, G. H. C. New, K. Osvay, “Analysis and optimization of optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B 19, 2945–2956 (2002). [CrossRef]
  88. C. N. Danson, P. A. Brummitt, R. J. Clarke, J. L. Collier, B. Fell, A. J. Frackiewicz, S. Hawkes, C. Hernandez-Gomez, P. Holligan, M. H. R. Hutchinson, A. Kidd, W. J. Lester, I. O. Musgrave, D. Neely, D. R. Neville, P. A. Norreys, D. A. Pepler, C. Reason, W. Shaikh, T. B. Winstone, R. W. W. Wyatt, B. E. Wyborn, “Vulcan petawatt: design, operation and interactions at 5 × 1020  Wcm-2,” Laser Part. Beams 23, 87–93 (2005). [CrossRef]
  89. O. V. Chekhlov, J. L. Collier, I. N. Ross, P. K. Bates, M. Notley, C. Hernandez-Gomez, W. Shaikh, C. N. Danson, D. Neely, P. Matousek, S. Hancock, L. Cardoso, “35  J broadband femtosecond optical parametric chirped pulse amplification system,” Opt. Lett. 31, 3665–3667 (2006). [CrossRef]
  90. V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, I. V. Yakovlev, “Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4, 421–427 (2007). [CrossRef]
  91. Z. Major, S. Trushin, I. Ahmad, M. Siebold, C. Wandt, S. Klingebiel, T.-J. Wang, J. A. Fülöp, A. Henig, S. Kruber, R. Weingartner, A. Popp, J. Osterhoff, R. Hörlein, J. Hein, V. Pervak, A. Apolonski, F. Krausz, S. Karsch, “Basic concepts and current status of the petawatt field synthesizer—a new approach to ultrahigh field generation,” Rev. Laser Eng. 37, 431–436 (2009).
  92. O. Novak, M. Divoky, H. Turcicova, P. Straka, “Design of a petawatt optical parametric chirped pulse amplification upgrade of the kilojoule iodine laser PALS,” Laser Part. Beams 31, 211–218 (2013). [CrossRef]
  93. J. Rothhardt, S. Demmler, S. Hadrich, J. Limpert, A. Tunnermann, “Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22  W of average power at 1  MHz repetition rate,” Opt. Express 20, 10870–10878 (2012). [CrossRef]
  94. S. Adachi, N. Ishii, T. Kanai, A. Kosuge, J. Itatani, Y. Kobayashi, D. Yoshitomi, K. Torizuka, S. Watanabe, “5-fs, multi-mJ, CEP-locked parametric chirped-pulse amplifier pumped by a 450-nm source at 1  kHz,” Opt. Express 16, 14341–14352 (2008). [CrossRef]
  95. D. J. Bradley, W. Sibbett, “Streak-camera studies of picosecond pulses from a mode-locked Nd: glass laser,” Opt. Commun. 9, 17–20 (1973). [CrossRef]
  96. T. R. Royt, “Passive mode-locking of the Nd-glass oscillator at high repetition rate with thermally compensated phosphate glasses,” Opt. Commun. 35, 271–276 (1980). [CrossRef]
  97. L. S. Goldberg, P. E. Schoen, M. J. Marrone, “Repetitively pulsed mode-locked Nd:phosphate glass laser oscillator-amplifier system,” Appl. Opt. 21, 1474–1477 (1982). [CrossRef]
  98. S. Tokita, J. Kawanaka, Y. Izawa, M. Fujita, T. Kawashima, “23.7-W picosecond cryogenic-Yb:YAG multipass amplifier,” Opt. Express 15, 3955–3961 (2007). [CrossRef]
  99. P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, R. Poprawe, “Compact diode-pumped 1.1  kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35, 4169–4171 (2010). [CrossRef]
  100. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, A. Tünnermann, “Femtosecond fiber CPA system emitting 830  W average output power,” Opt. Lett. 35, 94–96 (2010). [CrossRef]
  101. K.-H. Hong, J. T. Gopinath, D. Rand, A. M. Siddiqui, S.-W. Huang, E. Li, B. J. Eggleton, J. D. Hybl, T. Y. Fan, F. X. Kärtner, “High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier,” Opt. Lett. 35, 1752–1754 (2010). [CrossRef]
  102. J. Rothhardt, S. Hädrich, H. Carstens, N. Herrick, S. Demmler, J. Limpert, A. Tünnermann, “1  MHz repetition rate hollow fiber pulse compression to sub-100-fs duration at 100  W average power,” Opt. Lett. 36, 4605–4607 (2011). [CrossRef]
  103. D. A. Rand, S. E. J. Shaw, J. R. Ochoa, D. J. Ripin, A. Taylor, T. Y. Fan, H. Martin, S. Hawes, J. Zhang, S. Sarkisyan, E. Wilson, P. Lundquist, “Picosecond pulses from a cryogenically cooled, composite amplifier using Yb:YAG and Yb:GSAG,” Opt. Lett. 36, 340–342 (2011). [CrossRef]
  104. K. Kowalewski, J. Zembek, V. Envid, D. C. Brown, “201  W picosecond green laser using a mode-locked fiber laser driven cryogenic Yb:YAG amplifier system,” Opt. Lett. 37, 4633–4635 (2012). [CrossRef]
  105. K. F. Wall, D. E. Miller, T. Y. Fan, “Cryo-Yb:YAG lasers for next-generation photoinjector applications,” Proc. SPIE 8235, 823512 (2012). [CrossRef]
  106. A. Klenke, S. Breitkopf, M. Kienel, T. Gottschall, T. Eidam, S. Hädrich, J. Rothhardt, J. Limpert, A. Tünnermann, “530  W, 1.3  mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 38, 2283–2285 (2013). [CrossRef]
  107. C. Jauregui, J. Limpert, A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013). [CrossRef]
  108. R. Riedel, A. Stephanides, M. J. Prandolini, B. Gronloh, B. Jungbluth, T. Mans, F. Tavella, “Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers,” Opt. Lett. 39, 1422–1424 (2014). [CrossRef]
  109. B. A. Reagan, C. Baumgarten, K. Wernsing, H. Bravo, M. Woolston, A. Curtis, F. J. Furch, B. Luther, D. Patel, C. Menoni, J. J. Rocca, “1 Joule, 100  Hz repetition rate, picosecond CPA laser for driving high average power soft x-ray lasers,” in CLEO, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM1F.4.
  110. M. Schulz, R. Riedel, A. Willner, T. Mans, C. Schnitzler, P. Russbueldt, J. Dolkemeyer, E. Seise, T. Gottschall, S. Hädrich, S. Duesterer, H. Schlarb, J. Feldhaus, J. Limpert, B. Faatz, A. Tünnermann, J. Rossbach, M. Drescher, F. Tavella, “Yb:YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification,” Opt. Lett. 36, 2456–2458 (2011). [CrossRef]
  111. G. Mourou, B. Brocklesby, T. Tajima, J. Limpert, “The future is fibre accelerators,” Nat. Photonics 7, 258–261 (2013). [CrossRef]
  112. S. Breitkopf, “A path to terawatt peak-power fibre laser systems” (submitted).
  113. G. Huber, C. Kränkel, K. Petermann, “Solid-state lasers: status and future,” J. Opt. Soc. Am. B 27, B93–B105 (2010). [CrossRef]
  114. D. J. Richardson, J. Nilsson, W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010). [CrossRef]
  115. J. W. Dawson, J. K. Crane, M. J. Messerly, M. A. Prantil, P. H. Pax, A. K. Sridharan, G. S. Allen, D. R. Drachenberg, H. H. Phan, J. E. Heebner, C. A. Ebbers, R. J. Beach, E. P. Hartouni, C. W. Siders, T. M. Spinka, C. P. J. Barty, A. J. Bayramian, L. C. Haefner, F. Albert, W. H. Lowdermilk, A. M. Rubenchik, R. E. Bonanno, “High average power lasers for future particle accelerators,” AIP Conf. Proc. 1507, 147–153 (2012).
  116. M. E. Fermann, I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013). [CrossRef]
  117. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994). [CrossRef]
  118. A. Giesen, J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007). [CrossRef]
  119. D. Kouznetsov, J.-F. Bisson, K. Ueda, “Scaling laws of disk lasers,” Opt. Mater. 31, 754–759 (2009). [CrossRef]
  120. J. Speiser, “Scaling of thin-disk lasers—influence of amplified spontaneous emission,” J. Opt. Soc. Am. B 26, 26–35 (2009). [CrossRef]
  121. S. V. Marchese, C. R. E. Baer, R. Peters, C. Kränkel, A. G. Engqvist, M. Golling, D. J. H. C. Maas, K. Petermann, T. Südmeyer, G. Huber, U. Keller, “Efficient femtosecond high power Yb:Lu2O3 thin disk laser,” Opt. Express 15, 16966–16971 (2007). [CrossRef]
  122. C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, T. Südmeyer, R. Peters, K. Petermann, G. Huber, U. Keller, “Femtosecond Yb:Lu2O3 thin disk laser with 63  W of average power,” Opt. Lett. 34, 2823–2825 (2009). [CrossRef]
  123. S. Ricaud, A. Jaffres, P. Loiseau, B. Viana, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, M. Delaigue, E. Mottay, P. Georges, F. Druon, “Yb:CaGdAlO4 thin-disk laser,” Opt. Lett. 36, 4134–4136 (2011). [CrossRef]
  124. W. P. Latham, A. Lobad, T. C. Newell, D. Stalnaker, “6.5  kW, Yb:YAG ceramic thin disk laser,” AIP Conf. Proc. 1278, 758–764 (2010). [CrossRef]
  125. M. Suzuki, H. Kiriyama, I. Daito, Y. Ochi, H. Okada, M. Sato, Y. Tamaoki, T. Yoshii, J. Maeda, S. Matsuoka, H. Kan, P. R. Bolton, A. Sugiyama, K. Kondo, S. Kawanishi, “Hundred mJ, sub-picoseconds, high temporal contrast OPCPA/Yb:YAG ceramic thin disk hybrid laser system,” Appl. Phys. B 105, 181–184 (2011). [CrossRef]
  126. J. Mende, G. Spindler, J. Speiser, W. L. Bohn, A. Giesen, “Mode dynamics and thermal lens effects of thin-disk lasers,” Proc. SPIE 6871, 68710M (2008). [CrossRef]
  127. A. Killi, C. Stolzenburg, I. Zawischa, D. Sutter, J. Kleinbauer, S. Schad, R. Brockmann, S. Weiler, J. Neuhaus, S. Kalfhues, E. Mehner, D. Bauer, H. Schlueter, C. Schmitz, “The broad applicability of the disk laser principle: from CW to ps,” Proc. SPIE 7193, 71931T (2009). [CrossRef]
  128. A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hansch, P. Indelicato, L. Julien, C.-Y. Kao, P. E. Knowles, F. Kottmann, E. Le Bigot, Y.-W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009). [CrossRef]
  129. H. Furuse, H. Chosrowjan, J. Kawanaka, N. Miyanaga, M. Fujita, Y. Izawa, “ASE and parasitic lasing in thin disk laser with anti-ASE cap,” Opt. Express 21, 13118–13124 (2013). [CrossRef]
  130. D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, T. Dekorsy, “Mode-locked Yb:YAG thin-disk oscillator with 41  μJ pulse energy at 145  W average infrared power and high power frequency conversion,” Opt Express 20, 9698–9704 (2012).
  131. S. Ricaud, A. Jaffres, K. Wentsch, A. Suganuma, B. Viana, P. Loiseau, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, C. Hönninger, E. Mottay, P. Georges, F. Druon, “Femtosecond Yb:CaGdAlO4 thin-disk oscillator,” Opt. Lett. 37, 3984–3986 (2012). [CrossRef]
  132. O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M. C. Amann, A. Apolonski, V. L. Kalashnikov, F. Krausz, “High-power Kerr-lens mode-locked Yb:YAG thin-disk oscillator in the positive dispersion regime,” Opt. Lett. 37, 3543–3545 (2012). [CrossRef]
  133. C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, U. Keller, “Ultrafast thin-disk laser with 80  μJ pulse energy and 242  W of average power,” Opt. Lett. 39, 9–12 (2014). [CrossRef]
  134. C. Teisset, M. Schultze, R. Bessing, M. Häfner, J. Rauschenberger, D. Sutter, T. Metzger, “Picosecond thin-disk regenerative amplifier with high average power for pumping optical parametric amplifiers,” in CLEO, OSA Postdeadline Paper Digest (online) (Optical Society of America, 2013), paper CTh5C.6.
  135. J.-P. Negel, A. Voss, M. A. Ahmed, D. Bauer, D. Sutter, A. Killi, T. Graf, “1.1  kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38, 5442–5445 (2013). [CrossRef]
  136. H. Fattahi, C. Skrobol, M. Ueffing, Y. Deng, A. Schwarz, Y. Kida, V. Pervak, T. Metzger, Z. Major, F. Krausz, “High efficiency, multi-mJ, sub 10  fs, optical parametric amplifier at 3  kHz,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTh1N.6.
  137. J. Aus der Au, G. J. Spuhler, T. Südmeyer, R. Paschotta, R. Hovel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, U. Keller, “16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser,” Opt. Lett. 25, 859–861 (2000). [CrossRef]
  138. C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, U. Keller, “275  W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20, 23535–23541 (2012). [CrossRef]
  139. S. V. Marchese, C. R. Baer, A. G. Engqvist, S. Hashimoto, D. J. Maas, M. Golling, T. Sudmeyer, U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt Express 16, 6397–6407 (2008).
  140. J. Brons, V. Pervak, E. Fedulova, M. Seidel, D. Bauer, D. Sutter, V. L. Kalashnikov, A. Apolonski, O. Pronin, F. Krausz, “Power-scaling of Kerr-lens mode-locked Yb:YAG thin-disk oscillators,” in CLEO, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM4F.7.
  141. A. Diebold, F. Emaury, C. Schriber, M. Golling, C. J. Saraceno, T. Südmeyer, U. Keller, “SESAM mode-locked Yb:CaGdAlO4 thin disk laser with 62  fs pulse generation,” Opt. Lett. 38, 3842–3845 (2013). [CrossRef]
  142. C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. Baer, M. Golling, T. Südmeyer, U. Keller, “SESAMs for high-power oscillators: design guidelines and damage thresholds,” IEEE J. Sel. Top. Quantum Electron. 18, 29–41 (2012). [CrossRef]
  143. O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M. C. Amann, V. L. Kalashnikov, A. Apolonski, F. Krausz, “High-power 200  fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett. 36, 4746–4748 (2011). [CrossRef]
  144. O. Pronin, M. Seidel, F. Lücking, J. Brons, V. Pervak, A. Apolonski, T. Udem, F. Krausz, “Next-generation source of waveform-controlled light” (submitted).
  145. C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65, 423–426 (1997). [CrossRef]
  146. T. Metzger, C. Y. Teisset, F. Krausz, “High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper TuA2.
  147. C. Teisset, M. Schultze, R. Bessing, M. Haefner, S. Prinz, D. Sutter, T. Metzger, “300  W picosecond thin-disk regenerative amplifier at 10  kHz repetition rate,” in Advanced Solid-State Lasers Congress Postdeadline, OSA Postdeadline Paper Digest (online) (Optical Society of America, 2013), paper JTh5A.1.
  148. J. Tuemmler, R. Jung, T. Nubbemeyer, I. Will, W. Sandner, “Providing thin-disk technology for high laser pulse energy at high average power,” in Frontiers in Optics 2011/Laser Science XXVII, OSA Technical Digest (Optical Society of America, 2011), paper FThB3.
  149. M. Schulz, H. Hoeppner, M. Temme, R. Riedel, B. Faatz, M. J. Prandolini, M. Drescher, F. Tavella, “14 kilowatt burst average power from 2-stage cascaded Yb:YAG thin-disk multipass amplifier,” in Frontiers in Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper FTu4A.2.
  150. C. Skrobol, I. Ahmad, S. Klingebiel, C. Wandt, S. A. Trushin, Z. Major, F. Krausz, S. Karsch, “Broadband amplification by picosecond OPCPA in DKDP pumped at 515  nm,” Opt. Express 20, 4619–4629 (2012). [CrossRef]
  151. S. Klingebiel, I. Ahmad, C. Wandt, C. Skrobol, S. A. Trushin, Z. Major, F. Krausz, S. Karsch, “Experimental and theoretical investigation of timing jitter inside a stretcher-compressor setup,” Opt. Express 20, 3443–3455 (2012). [CrossRef]
  152. T. Miura, K. Takasago, A. Endo, K. Torizuka, F. Kannari, “Timing stabilization of the 1-kHz femtosecond pulses with active control by means of the spectral-resolved upconversion,” in The 4th Pacific Rim Conference on Lasers and Electro-Optics (IEEE, 2001), Vol. 2, pp. 520–521.
  153. A. Schwarz, M. Ueffing, Y. Deng, X. Gu, H. Fattahi, T. Metzger, M. Ossiander, F. Krausz, R. Kienberger, “Active stabilization for optically synchronized optical parametric chirped pulse amplification,” Opt. Express 20, 5557–5565 (2012). [CrossRef]
  154. S. Prinz, “Sub-2-fs active pump-seed synchronization for OPCPA” (submitted).
  155. J. Tümmler, R. Jung, H. Stiel, P. V. Nickles, W. Sandner, “High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy,” Opt. Lett. 34, 1378–1380 (2009). [CrossRef]
  156. J. Tümmler, R. Jung, H. Stiel, P. V. Nickles, W. Sandner, “High repetition rate diode pumped CPA thin disk laser of the joule class,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CFD4.
  157. http://www.mb‐berlin.de/de/research/projects/1.2/topics/1_power_disk_laser/ .
  158. M. Gorjan, T. Metzger, (unpublished).
  159. J. Speiser, “Thin disk laser—energy scaling,” Laser Phys. 19, 274–280 (2009). [CrossRef]
  160. T. Gottwald, C. Stolzenburg, D. Bauer, J. Kleinbauer, V. Kuhn, T. Metzger, S. Schad, D. Sutter, A. Killi, “Recent disk laser development at Trumpf,” Proc. SPIE 8547, 85470C (2012). [CrossRef]
  161. M. Kienel, M. Müller, S. Demmler, J. Rothhardt, A. Klenke, T. Eidam, J. Limpert, A. Tünnermann, “Coherent beam combination of Yb:YAG single-crystal rod amplifiers,” Opt. Lett. 39, 3278–3281 (2014). [CrossRef]
  162. J. Limpert, “Performance scaling of ultrafast laser systems by coherent addition of femtosecond pulses,” in CLEO, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW3E.3.
  163. M. Kienel, A. Klenke, T. Eidam, S. Hädrich, J. Limpert, A. Tünnermann, “Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification,” Opt. Lett. 39, 1049–1052 (2014). [CrossRef]
  164. D. Herrmann, C. Homann, R. Tautz, M. Scharrer, P. S. J. Russell, F. Krausz, L. Veisz, E. Riedle, “Approaching the full octave: noncollinear optical parametric chirped pulse amplification with two-color pumping,” Opt. Express 18, 18752–18762 (2010). [CrossRef]
  165. Alternatively, momentum conservation can also be fulfilled by periodic modulation of some optical property of the nonlinear crystal (quasi-phase matching) instead of exploiting birefringence. Periodically poled crystals are being widely used for this purpose.
  166. D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. D. Silvestri, G. Cerullo, “Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers,” J. Opt. 12, 013001 (2010). [CrossRef]
  167. R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. Di Trapani, R. Righini, “Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses,” J. Opt. Soc. Am. B 10, 2222–2232 (1993). [CrossRef]
  168. T. J. Driscoll, G. M. Gale, F. Hache, “Ti:sapphire second-harmonic-pumped visible range femtosecond optical parametric oscillator,” Opt. Commun. 110, 638–644 (1994). [CrossRef]
  169. G. M. Gale, M. Cavallari, T. J. Driscoll, F. Hache, “Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator,” Opt. Lett. 20, 1562–1564 (1995). [CrossRef]
  170. G. M. Gale, M. Cavallari, F. Hache, “Femtosecond visible optical parametric oscillator,” J. Opt. Soc. Am. B 15, 702–714 (1998). [CrossRef]
  171. Optical parametric amplification done in the frequency domain holds promise for relaxing restrictions arising from phase mismatch in OPA.
  172. B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
  173. M. T. Hassan, A. Wirth, I. Grguraš, A. Moulet, T. T. Luu, J. Gagnon, V. Pervak, E. Goulielmakis, “Invited Article: Attosecond photonics: synthesis and control of light transients,” Rev. Sci. Instrum. 83, 111301 (2012). [CrossRef]
  174. S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, E. Li, B. J. Eggleton, G. Cerullo, F. X. Kartner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics 5, 475–479 (2011). [CrossRef]
  175. S.-W. Huang, G. Cirmi, J. Moses, K.-H. Hong, S. Bhardwaj, J. R. Birge, L.-J. Chen, I. V. Kabakova, E. Li, B. J. Eggleton, G. Cerullo, F. X. Kärtner, “Optical waveform synthesizer and its application to high-harmonic generation,” J. Phys. B 45, 074009 (2012).
  176. C. Manzoni, G. Cerullo, S. De Silvestri, “Ultrabroadband self-phase-stabilized pulses by difference-frequency generation,” Opt. Lett. 29, 2668–2670 (2004). [CrossRef]
  177. G. Cerullo, A. Baltuška, O. D. Mücke, C. Vozzi, “Few-optical-cycle light pulses with passive carrier-envelope phase stabilization,” Laser Photon. Rev. 5, 323–351 (2011). [CrossRef]
  178. K.-H. Hong, S.-W. Huang, J. Moses, X. Fu, C.-J. Lai, G. Cirmi, A. Sell, E. Granados, P. Keathley, F. X. Kärtner, “High-energy, phase-stable, ultrabroadband kHz OPCPA at 2.1  μm pumped by a picosecond cryogenic Yb:YAG laser,” Opt. Express 19, 15538–15548 (2011). [CrossRef]
  179. Y. Deng, A. Schwarz, H. Fattahi, M. Ueffing, X. Gu, M. Ossiander, T. Metzger, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, G. Marcus, F. Krausz, R. Kienberger, N. Karpowicz, “Carrier-envelope-phase-stable, 1.2  mJ, 1.5 cycle laser pulses at 2.1  μm,” Opt. Lett. 37, 4973–4975 (2012). [CrossRef]
  180. H. Fattahi, A. Schwarz, S. Keiber, N. Karpowicz, “Efficient, octave-spanning difference-frequency generation using few-cycle pulses in simple collinear geometry,” Opt. Lett. 38, 4216–4219 (2013). [CrossRef]
  181. D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, A. Baltuška, “White light generation over three octaves by femtosecond filament at 3.9  μm in argon,” Opt. Lett. 37, 3456–3458 (2012). [CrossRef]
  182. A. A. Voronin, J. M. Mikhailova, M. Gorjan, Z. Major, A. M. Zheltikov, “Pulse compression to subcycle field waveforms with split-dispersion cascaded hollow fibers,” Opt. Lett. 38, 4354–4357 (2013). [CrossRef]
  183. A. Schwarz, “Few-cycle, phase-stable infrared OPCPA,” Ph.D. dissertation (LMU, 2014).
  184. A. Wirth, M. T. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, E. Goulielmakis, “Synthesized light transients,” Science 334, 195–200 (2011). [CrossRef]
  185. O. Razskazovskaya, et al., is preparing an article.
  186. S. V. Bulanov, N. M. Naumova, F. Pegoraro, “Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma,” Phys. Plasmas 1, 745–757 (1994). [CrossRef]
  187. R. Lichters, J. Meyer-ter-Vehn, A. Pukhov, “Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity,” Phys. Plasmas 3, 3425–3437 (1996). [CrossRef]
  188. T. Baeva, S. Gordienko, A. Pukhov, “Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma,” Phys. Rev. E 74, 046404 (2006). [CrossRef]
  189. G. D. Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, F. Krausz, “Route to intense single attosecond pulses,” New J. Phys. 8, 19 (2006). [CrossRef]
  190. P. Heissler, R. Hörlein, J. M. Mikhailova, L. Waldecker, P. Tzallas, A. Buck, K. Schmid, C. M. S. Sears, F. Krausz, L. Veisz, M. Zepf, G. D. Tsakiris, “Few-cycle driven relativistically oscillating plasma mirrors: a source of intense isolated attosecond pulses,” Phys. Rev. Lett. 108, 235003 (2012). [CrossRef]
  191. J. M. Mikhailova, M. V. Fedorov, N. Karpowicz, P. Gibbon, V. T. Platonenko, A. M. Zheltikov, F. Krausz, “Isolated attosecond pulses from laser-driven synchrotron radiation,” Phys. Rev. Lett. 109, 245005 (2012). [CrossRef]
  192. J. Tate, T. Auguste, H. G. Muller, P. Salières, P. Agostini, L. F. DiMauro, “Scaling of wave-packet dynamics in an intense midinfrared field,” Phys. Rev. Lett. 98, 013901 (2007). [CrossRef]
  193. A. D. Shiner, C. Trallero-Herrero, N. Kajumba, H. C. Bandulet, D. Comtois, F. Légaré, M. Giguère, J. C. Kieffer, P. B. Corkum, D. M. Villeneuve, “Wavelength scaling of high harmonic generation efficiency,” Phys. Rev. Lett. 103, 073902 (2009). [CrossRef]
  194. F. Krausz, M. I. Stockman, “Attosecond metrology: from electron capture to future signal processing,” Nat. Photonics 8, 205–213 (2014). [CrossRef]
  195. A. Harth, M. Schultze, T. Lang, T. Binhammer, S. Rausch, U. Morgner, “Two-color pumped OPCPA system emitting spectra spanning 1.5 octaves from VIS to NIR,” Opt. Express 20, 3076–3081 (2012). [CrossRef]
  196. C. Manzoni, S. W. Huang, G. Cirmi, P. Farinello, J. Moses, F. X. Kärtner, G. Cerullo, “Coherent synthesis of ultra-broadband optical parametric amplifiers,” Opt. Lett. 37, 1880–1882 (2012). [CrossRef]
  197. T. T. Luu, M. T. Hassan, A. Moulet, O. Razskazovskaya, N. Kaprowicz, V. Pervak, F. Krausz, E. Goulielmakis, “Isolated optical attosecond pulses,” in CLEO, OSA Technical Digest (online) (Optical Society of America, 2013), paper QF1C.6.
  198. M. T. Hassan, “Attosecond control of bound electrons” (submitted).
  199. F. X. Kärtner, O. Mücke, G. Cirmi, S. Fang, S.-H. Chia, C. Manzoni, P. Farinello, G. Cerullo, “High energy sub-cycle optical waveform synthesizer,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (online) (Optical Society of America, 2013), paper AW2A.1.
  200. S. N. Bagayev, V. I. Trunov, E. V. Pestryakov, V. E. Leschenko, S. A. Frolov, V. A. Vasiliev, “High-intensity femtosecond laser systems based on coherent combining of optical fields,” Opt. Spectrosc. 115, 311–319 (2013). [CrossRef]
  201. G. M. Rossi, G. Cirmi, S. Fang, S.-H. Chia, O. D. Muecke, F. Kärtner, C. Manzoni, P. Farinello, G. Cerullo, “Spectro-temporal characterization of all channels in a sub-optical-cycle parametric waveform synthesizer,” in CLEO, OSA Technical Digest (online) (Optical Society of America, 2014), paper SF1E.3.
  202. S. Fang, G. Cirmi, S. H. Chia, O. D. Mucke, F. X. Kartner, C. Manzoni, P. Farinello, G. Cerullo, “Multi-mJ parametric synthesizer generating two-octave-wide optical waveforms,” in Conference on Lasers and Electro-Optics Pacific Rim (Optical Society of America, 2013), paper WB3_1.
  203. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25, 575–577 (2000). [CrossRef]
  204. T. Binhammer, E. Rittweger, R. Ell, F. X. Kärtner, U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron. 41, 1552–1557 (2005). [CrossRef]
  205. M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49, 2117–2132 (1994). [CrossRef]
  206. M. Schultze, C. Y. Teisset, S. Prinz, D. H. Sutter, K. Michel, T. Metzger, “Highly-efficient, optically synchronized thin disk amplifier for pumping OPCPA at high repetition rates between 100–300  kHz,” Solid State Lasers XXIII: Technology and Devices, 2014, to be published.