OSA's Digital Library

Optica

Optica

| RAPID DISSEMINATION OF HIGH-IMPACT RESULTS

  • Editor: Alex Gaeta
  • Vol. 1, Iss. 2 — Aug. 20, 2014
  • pp: 96–100

Transparent subdiffraction optics: nanoscale light confinement without metal

Saman Jahani and Zubin Jacob  »View Author Affiliations


Optica, Vol. 1, Issue 2, pp. 96-100 (2014)
http://dx.doi.org/10.1364/OPTICA.1.000096


View Full Text Article

Enhanced HTML    Acrobat PDF (1316 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The integration of nanoscale electronics with conventional optical devices is restricted by the diffraction limit of light. Metals can confine light at the subwavelength scales needed, but they are lossy, while dielectric materials do not confine evanescent waves outside a waveguide or resonator, leading to cross talk between components. We show that light can be confined below the diffraction limit using completely transparent artificial media (metamaterials with ε>1,μ=1). Our approach relies on controlling the optical momentum of evanescent waves—an important electromagnetic property overlooked in photonic devices. For practical applications, we propose a class of waveguides using this approach that outperforms the cross-talk performance by 1 order of magnitude as compared to any existing photonic structure. Our work overcomes a critical stumbling block for nanophotonics by completely averting the use of metals and can impact electromagnetic devices from the visible to microwave frequency ranges.

© 2014 Optical Society of America

OCIS Codes
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

History
Original Manuscript: April 9, 2014
Revised Manuscript: June 17, 2014
Manuscript Accepted: June 23, 2014
Published: August 12, 2014

Citation
Saman Jahani and Zubin Jacob, "Transparent subdiffraction optics: nanoscale light confinement without metal," Optica 1, 96-100 (2014)
http://www.opticsinfobase.org/optica/abstract.cfm?URI=optica-1-2-96


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009). [CrossRef]
  2. S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, 1994).
  3. D. K. Gramotnev, S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010). [CrossRef]
  4. Z. Han, S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013). [CrossRef]
  5. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008). [CrossRef]
  6. R. Zia, M. D. Selker, P. B. Catrysse, M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004). [CrossRef]
  7. V. R. Almeida, Q. Xu, C. A. Barrios, M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004). [CrossRef]
  8. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1, 115–118 (2007). [CrossRef]
  9. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3, 216–219 (2009). [CrossRef]
  10. J. D. Joannopoulos, P. R. Villeneuve, S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997). [CrossRef]
  11. T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Status Solidi A 197, 688–702 (2003). [CrossRef]
  12. S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998). [CrossRef]
  13. D. Dai, Y. Shi, S. He, “Comparative study of the integration density for passive linear planar light-wave circuits based on three different kinds of nanophotonic waveguide,” Appl. Opt. 46, 1126–1131 (2007). [CrossRef]
  14. S. Tomljenovic-Hanic, C. Martijn de Sterke, M. J. Steel, “Packing density of conventional waveguides and photonic crystal waveguides,” Opt. Commun. 259, 142–148 (2006). [CrossRef]
  15. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006). [CrossRef]
  16. M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451–2456 (2000). [CrossRef]
  17. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998). [CrossRef]
  18. G. W. Milton, The Theory of Composites (Cambridge University, 2002).
  19. G. Veronis, S. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express 16, 2129–2140 (2008). [CrossRef]
  20. P. B. Catrysse, S. Fan, “Transverse electromagnetic modes in aperture waveguides containing a metamaterial with extreme anisotropy,” Phys. Rev. Lett. 106, 223902 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Supplement 1: PDF (1517 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited