OSA's Digital Library

Photonics Research

Photonics Research

| A joint OSA/Chinese Laser Press publication

  • Editor: Zhiping (James) Zhou
  • Vol. 1, Iss. 3 — Oct. 1, 2013
  • pp: 140–147

High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications [Invited]

Léopold Virot, Laurent Vivien, Jean-Marc Fédéli, Yann Bogumilowicz, Jean-Michel Hartmann, Frédéric Bœuf, Paul Crozat, Delphine Marris-Morini, and Eric Cassan  »View Author Affiliations


Photonics Research, Vol. 1, Issue 3, pp. 140-147 (2013)
http://dx.doi.org/10.1364/PRJ.1.000140


View Full Text Article

Enhanced HTML    Acrobat PDF (786 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper reports on high-performance waveguide-integrated germanium photodiodes for optical communications applications. 200 mm wafers and production tools were used to fabricate the devices. Yields over 97% were obtained for three different compact photodiodes ( 10 × 10 μm and intrinsic region width of 0.5, 0.7, and 1 μm) within the same batch of three wafers. Those photodiodes exhibit low dark currents under reverse bias with median values of 74, 62, and 61 nA for intrinsic widths of 0.5, 0.7, and 1 μm, respectively, over a full wafer. Responsivities up to 0.78 A / W at 1550 nm and zero bias were measured. Zero bias operation is possible for 25 and 40 Gbps with receiver sensitivity estimated to 13.9 and 12.3 dBm , respectively.

© 2013 Chinese Laser Press

OCIS Codes
(040.5160) Detectors : Photodetectors
(130.0250) Integrated optics : Optoelectronics
(130.3120) Integrated optics : Integrated optics devices
(230.5160) Optical devices : Photodetectors
(230.5170) Optical devices : Photodiodes

ToC Category:
Integrated Optics

History
Original Manuscript: June 29, 2013
Revised Manuscript: August 29, 2013
Manuscript Accepted: August 29, 2013
Published: October 2, 2013

Citation
Léopold Virot, Laurent Vivien, Jean-Marc Fédéli, Yann Bogumilowicz, Jean-Michel Hartmann, Frédéric Bœuf, Paul Crozat, Delphine Marris-Morini, and Eric Cassan, "High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications [Invited]," Photon. Res. 1, 140-147 (2013)
http://www.opticsinfobase.org/prj/abstract.cfm?URI=prj-1-3-140


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Fama, L. Colace, G. Masini, G. Assanto, and H.-C. Luan, “High performance germanium-on-silicon detectors for optical communications,” Appl. Phys. Lett. 81, 586–588 (2002). [CrossRef]
  2. M. Jutzi, M. Berroth, and G. Wohl, “Ge-on-Si vertical incidence photodiodes with 39 GHz bandwidth,” IEEE Photon. Technol. Lett. 17, 1510–1512 (2005).
  3. M. Oehme, J. Werner, E. Kasper, M. Jutzi, and M. Berroth, “High bandwidth Ge p-i-n photodetector integrated on Si,” Appl. Phys. Lett. 89, 071117 (2006). [CrossRef]
  4. D. Ahn, C.-Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15, 3916–3921 (2007). [CrossRef]
  5. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31  GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate,” Opt. Express 15, 13965 (2007). [CrossRef]
  6. L. Vivien, M. Rouvière, J.-M. Fédéli, D. Marris-Morini, J. F. Damlencourt, J. Mangeney, P. Crozat, L. El Melhaoui, E. Cassan, X. Le Roux, D. Pascal, and S. Laval, “High speed and high responsivity germanium photodetector integrated in a silicon-on-insulator microwaveguide,” Opt. Express 15, 9843–9848 (2007). [CrossRef]
  7. L. Chen, P. Dong, and M. Lipson, “High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding,” Opt. Express 16, 11513–11518 (2008). [CrossRef]
  8. K. Ang, S. Zhu, and M. Yu, “High-performance waveguided Ge-on-SOI metal–semiconductor–metal photodetectors with novel silicon–carbon (Si:C) Schottky barrier enhancement layer,” IEEE Photon. Technol. Lett. 20, 754–756 (2008).
  9. J. Wang, W. Y. Loh, K. T. Chua, H. Zang, Y. Z. Xiong, S. M. F. Tan, M. B. Yu, S. J. Lee, G. Q. Lo, and D. L. Kwong, “Low-voltage high-speed (18 GHz/1 V) evanescent-coupled thin-film-Ge lateral PIN photodetectors integrated on Si waveguide,” IEEE Photonics Technol. Lett. 20, 1485–1487 (2008).
  10. D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95, 261105 (2009). [CrossRef]
  11. S. Klinger, M. Berroth, M. Kaschel, M. Oehme, and E. Kasper, “Ge-on-Si p-i-n photodiodes with a 3  dB bandwidth of 49  GHz,” IEEE Photon. Technol. Lett. 21, 920–922 (2009).
  12. L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42  GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17, 6252–6257 (2009). [CrossRef]
  13. S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464, 80–84 (2010). [CrossRef]
  14. C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45  GHz CMOS compatible germanium waveguide photodiode with low dark current,” Opt. Express 19, 24897–24904 (2011). [CrossRef]
  15. L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fédéli, “Zero-bias 40  Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20, 1096–1101 (2012). [CrossRef]
  16. A. Liu, R. Jones, L. Liao, and D. Samara-rubio, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427, 615–618 (2004). [CrossRef]
  17. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005). [CrossRef]
  18. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2, 433–437 (2008). [CrossRef]
  19. D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16, 334–339 (2008). [CrossRef]
  20. M. Ziebell, D. Marris-Morini, G. Rasigade, J.-M. Fédéli, P. Crozat, E. Cassan, D. Bouville, and L. Vivien, “40  Gbit/s low-loss silicon optical modulator based on a pipin diode,” Opt. Express 20, 10591–10596 (2012). [CrossRef]
  21. X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization,” Opt. Express 21, 4116–4125 (2013). [CrossRef]
  22. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006). [CrossRef]
  23. G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit,” Opt. Express 14, 8154–8159 (2006). [CrossRef]
  24. B. Ben Bakir, a. Descos, N. Olivier, D. Bordel, P. Grosse, E. Augendre, L. Fulbert, and J. M. Fedeli, “Electrically driven hybrid Si/III–V Fabry-Pérot lasers based on adiabatic mode transformers,” Opt. Express 19, 10317–10325 (2011). [CrossRef]
  25. S. Stankovi, R. Jones, M. N. Sysak, J. M. Heck, G. Roelkens, D. Van Thourhout, A. Abstract, and V. Iii, “Hybrid III–V/Si distributed-feedback laser,” IEEE Photon. Technol. Lett. 24, 2155–2158 (2012).
  26. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, M. L. Davenport, L. A. Coldren, and J. E. Bowers, “Hybrid III/V silicon photonic source with integrated 1D free-space beam steering.,” Opt. Lett. 37, 4257–4259 (2012). [CrossRef]
  27. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35, 679–681 (2010). [CrossRef]
  28. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20, 11316–11320 (2012). [CrossRef]
  29. T. A. Langdo, C. W. Leitz, M. T. Currie, E. A. Fitzgerald, A. Lochtefeld, and D. A. Antoniadis, “High quality Ge on Si by epitaxial necking,” Appl. Phys. Lett. 76, 3700–3702 (2000). [CrossRef]
  30. J. M. Hartmann, A. M. Papon, P. Holliger, G. Rolland, T. Billon, M. Rouvière, L. Vivien, and S. Laval, “Reduced pressure—chemical vapor deposition of Ge thick layers on Si (001) for microelectronics and optoelectronics purposes,”MRS Proc.809, B4.3.10.1557/PROC-809-B4.3
  31. Y. Liu, M. D. Deal, and J. D. Plummer, “High-quality single-crystal Ge on insulator by liquid-phase epitaxy on Si substrates,” Appl. Phys. Lett. 84, 2563–2565 (2004). [CrossRef]
  32. J. M. Hartmann, J.-F. Damlencourt, Y. Bogumilowicz, P. Holliger, G. Rolland, and T. Billon, “Reduced pressure-chemical vapor deposition of intrinsic and doped Ge layers on Si(001) for microelectronics and optoelectronics purposes,” J. Cryst. Growth 274, 90–99 (2005). [CrossRef]
  33. D. Choi, Y. Ge, J. S. Harris, J. Cagnon, and S. Stemmer, “Low surface roughness and threading dislocation density Ge growth on Si (001),” J. Cryst. Growth 310, 4273–4279 (2008). [CrossRef]
  34. K. Toko, T. Tanaka, Y. Ohta, T. Sadoh, and M. Miyao, “Defect-free Ge-on-insulator with (100), (110), and (111) orientations by growth-direction-selected rapid-melting growth,” Appl. Phys. Lett. 97, 152101 (2010). [CrossRef]
  35. K. Toko, Y. Ohta, T. Sakane, T. Sadoh, I. Mizushima, and M. Miyao, “Single-crystalline (100) Ge networks on insulators by rapid-melting growth along hexagonal mesh-pattern,” Appl. Phys. Lett. 98, 042101 (2011). [CrossRef]
  36. Y. H. Tan and C. S. Tan, “Growth and characterization of germanium epitaxial film on silicon (001) using reduced pressure chemical vapor deposition,” Thin Solid Films 520, 2711–2716 (2012). [CrossRef]
  37. G. Lucovsky, R. F. Schwarz, and R. B. Emmons, “Transit-time considerations in p–i–n diodes,” J. Appl. Phys. 35, 622–628 (1964). [CrossRef]
  38. S. Kobayashi, Y. Nishi, and K. C. Saraswat, “Effect of isochronal hydrogen annealing on surface roughness and threading dislocation density of epitaxial Ge films grown on Si,” Thin Solid Films 518, S136–S139 (2010). [CrossRef]
  39. C. O. Chui, K. Gopalakrishnan, P. B. Griffin, J. D. Plummer, and K. C. Saraswat, “Activation and diffusion studies of ion-implanted p and n dopants in germanium,” Appl. Phys. Lett. 83, 3275–3277 (2003). [CrossRef]
  40. M. Koike, Y. Kamata, T. Ino, D. Hagishima, K. Tatsumura, M. Koyama, and A. Nishiyama, “Diffusion and activation of n-type dopants in germanium,” J. Appl. Phys. 104, 023523 (2008). [CrossRef]
  41. H. Bracht, S. Schneider, and R. Kube, “Diffusion and doping issues in germanium,” Microelectron. Eng. 88, 452–457 (2011). [CrossRef]
  42. S. Koffel, R. J. Kaiser, A. J. Bauer, B. Amon, P. Pichler, J. Lorenz, L. Frey, P. Scheiblin, V. Mazzocchi, J.-P. Barnes, and A. Claverie, “Experiments and simulation of the diffusion and activation of the n-type dopants P, As, and Sb implanted into germanium,” Microelectron. Eng. 88, 458–461 (2011). [CrossRef]
  43. W. T. Tsang, ed., Semiconductors and Semimetals, Lightwave Communication Technology, Part D. Photodetectors (Academic, 1985), Vol. 22, pp.  1–451.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited