OSA's Digital Library

Photonics Research

Photonics Research

| A joint OSA/Chinese Laser Press publication

  • Editor: Zhiping (James) Zhou
  • Vol. 1, Iss. 4 — Dec. 1, 2013
  • pp: 197–201

High-contrast, high-resolution photochromic silicone polymer based on photoswitchable [Ru(bpy)2OSO]PF6 building blocks

Kristin Springfeld, Volker Dieckmann, and Mirco Imlau  »View Author Affiliations


Photonics Research, Vol. 1, Issue 4, pp. 197-201 (2013)
http://dx.doi.org/10.1364/PRJ.1.000197


View Full Text Article

Enhanced HTML    Acrobat PDF (588 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The implementation of photoinduced linkage isomerism in molecular-based optical materials represents a promising approach for the synthesis of high-contrast, high-resolution photosensitive materials that are necessary for high-density (holographic) data storage and/or real-three-dimensional (holographic) displays. The unsolved task of embedding a photofunctional coordination complex into a matrix like polymer polydimethylsiloxane (PDMS) with photoinduced isomerism of a SO-bond in the sulfoxide compound [Ru(bpy)2OSO]PF6 is addressed. This approach allows to preserve the spectral properties within the solid dielectric environment, with an impact of PDMS on population and relaxation dynamics. All data are discussed in the framework of photofunctionality, storage, and display applications.

© 2013 Chinese Laser Press

OCIS Codes
(090.2870) Holography : Holographic display
(090.2900) Holography : Optical storage materials
(160.5470) Materials : Polymers
(210.0210) Optical data storage : Optical data storage
(160.5335) Materials : Photosensitive materials

ToC Category:
Materials

History
Original Manuscript: July 19, 2013
Revised Manuscript: September 6, 2013
Manuscript Accepted: September 7, 2013
Published: November 19, 2013

Citation
Kristin Springfeld, Volker Dieckmann, and Mirco Imlau, "High-contrast, high-resolution photochromic silicone polymer based on photoswitchable [Ru(bpy)2OSO]PF6 building blocks," Photon. Res. 1, 197-201 (2013)
http://www.opticsinfobase.org/prj/abstract.cfm?URI=prj-1-4-197


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Gütlich, Y. Garcia, and Th. Woike, “Photoswitchable coordination compounds,” Coord. Chem. Rev. 219, 839–879 (2001). [CrossRef]
  2. D. Schaniel, M. Imlau, T. Weisemöller, T. Woike, K. W. Kramer, and H. U. Gudel, “Photoinduced nitrosyl linkage isomers uncover a variety of unconventional photorefractive media,” Adv. Mater. 19, 723–726 (2007). [CrossRef]
  3. M. Imlau, S. Haussühl, T. Woike, R. Schieder, V. Angelov, R. A. Rupp, and K. Schwarz, “Holographic recording by excitation of metastable electronic states in Na2Fe(CN)5NO.2H2O a new photorefractive effect,” Appl. Phys. B 68, 877–885 (1999). [CrossRef]
  4. P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications 1 (Springer, 2006).
  5. N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2, 819–823 (2012).
  6. F. K. Bruder, R. Hagen, T. Rolle, M. S. Weiser, and T. Facke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem., Int. Ed. Engl. 50, 4552–4573 (2011).
  7. M. Imlau, T. Woike, S. Odoulov, and T. Bieringer, “Holographic data storage,” in Nanoelectronics and Information Technology, R. Waser, ed. (Wiley-VCH, 2012), pp. 727–750.
  8. V. Dieckmann, S. Eicke, K. Springfeld, and M. Imlau, “Transition metal compounds towards holography,” Materials 5, 1155–1175 (2012). [CrossRef]
  9. S. Haussühl, G. Schetter, and T. Woike, “Nitroprussides, a new group of materials for holographic information-storage on the basis of metastable electronic states,” Opt. Commun. 114, 219–222 (1995). [CrossRef]
  10. P. Coppens, D. V. Fomitchev, M. D. Carducci, and K. Culp, “Crystallography of molecular excited states: transition-metal nitrosyl complexes and the study of transient species,” J. Chem. Soc. Dalton Trans. (6), 865–872 (1998). [CrossRef]
  11. D. Schaniel, J. Schefer, M. Imlau, and T. Woike, “Light-induced structural changes by excitation of metastable states in Na2[Fe(CN)5NO]·2H2O single crystals,” Phys. Rev. B 68, 104108 (2003).
  12. J. M. Cole, “Applications of photocrystallography: a future perspective,” Z. Kristallogr. 223, 259–271 (2008). [CrossRef]
  13. T. Woike and D. Schaniel, “Photocrystallography,” Z. Kristallogr. 223, 4–5 (2008), Special Issue.
  14. D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14, 159–160 (1969). [CrossRef]
  15. M. Irie, “Photoresponsive polymers,” Adv. Polym. Sci. 94, 27–67 (1990).
  16. P. H. Rasmussen, P. S. Ramanujam, S. Hvilsted, and R. H. Berg, “A remarkably efficient azobenzene peptide for holographic information storage,” J. Am. Chem. Soc. 121, 4738–4743 (1999). [CrossRef]
  17. A. Shishido, “Rewritable holograms based on azobenzene-containing liquid-crystalline polymers,” Polymer J. 42, 525–533 (2010). [CrossRef]
  18. N. G. Shimkina, M. M. Krayushkin, V. A. Barachevsky, A. A. Dunaev, B. A. Izmailov, V. A. Vasnev, and M. L. Keshtov, “Photochromic silicone polymers based on 1,2-dihetarylethenes,” ARKIVOC iv, 112–119 (2008). [CrossRef]
  19. V. Dieckmann, M. Imlau, D. H. Taffa, L. Walder, R. Lepski, D. Schaniel, and T. Woike, “Phototriggered NO and CN release from [Fe(CN)(5)NO](2-) molecules electrostatically attached to TiO2 surfaces,” Phys. Chem. Chem. Phys. 12, 3283–3288 (2010). [CrossRef]
  20. A. Schuy, T. Woike, and D. Schaniel, “Photoisomerisation in single molecules of nitroprusside embedded in mesopores of xerogels,” J. Sol. Gel Sci. Technol. 50, 403–408 (2009). [CrossRef]
  21. J. J. Rack, “Electron transfer triggered sulfoxide isomerization in ruthenium and osmium complexes,” Coord. Chem. Rev. 253, 78–85 (2009). [CrossRef]
  22. V. Dieckmann, S. Eicke, J. J. Rack, Th. Woike, and M. Imlau, “Pronounced photosensitivity of molecular [Ru(bpy)2(OSO)]+ solutions based on two photoinduced linkage isomers,” Opt. Express 17, 15052–15060 (2009). [CrossRef]
  23. D. P. Butcher, A. A. Rachford, J. L. Petersen, and J. J. Rack, “Phototriggered S→O isomerization of a ruthenium-bound chelating sulfoxide,” Inorg. Chem. 45, 9178–9180 (2006). [CrossRef]
  24. M. J. Root and E. Deutsch, “Synthesis and characterization of (bipyridine)(terpyridine)(chalcogenoether)ruthenium(ii) complexes—kinetics and mechanism of the hydrogen-peroxide oxidation of [(bpy)(tpy)RuS(CH3)2]2+ to [(bpy)(tpy)RuS(O)(CH3)2]2+—kinetics of the aquation of [(bpy)(tpy)RuS(O)(CH3)2]2+,” Inorg. Chem. 24, 1464–1471 (1985). [CrossRef]
  25. J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75, 6544–6554 (2003). [CrossRef]
  26. T. A. Grusenmeyer, B. A. McClure, C. J. Ziegler, and J. J. Rack, “Solvent effects on isomerization in a ruthenium sulfoxide complex,” Inorg. Chem. 49, 4466–4470 (2010). [CrossRef]
  27. S. Eicke, V. Dieckmann, A. Kruse, K.-M. Voit, M. Imlau, and L. Walder, “Dynamics of the light-induced absorption in photochromic [Ru(bpy)2(OSO)]+,” J. Spectrosc. Dyn. (to be published).
  28. V. Dieckmann, K. Springfeld, S. Eicke, M. Imlau, and J. J. Rack, “Thermal stability, photochromic sensitivity and optical properties of [Ru(bpy)2(OSOR)]+ compounds with R = Bn, BnCl, BnMe,” Opt. Express 18, 23495–23503 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited