OSA's Digital Library

Photonics Research

Photonics Research

| A joint OSA/Chinese Laser Press publication

  • Editor: Zhiping (James) Zhou
  • Vol. 2, Iss. 3 — Jun. 1, 2014
  • pp: 82–86

Theoretical analysis of a quasi-Bessel beam for laser ablation

Pinghui Wu, Chenghua Sui, and Wenhua Huang  »View Author Affiliations

Photonics Research, Vol. 2, Issue 3, pp. 82-86 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (471 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A quasi-Bessel beam (QBB) is suitable for laser ablation because it possesses a micrometer-sized focal spot and long depth of focus simultaneously. In this paper, the characterizations of QBBs formed by the ideal axicon and oblate-tip axicon are described. Strong on-axis intensity oscillations occur due to interference between the QBB and the refracted beam by the oblate tip. Using the axicon for laser ablation was theoretically investigated. Simple analytical formulas can be used to predict the required laser parameters, including the laser pulse energy, the generated fluence distributions, and the beam diameters.

© 2014 Chinese Laser Press

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(140.3390) Lasers and laser optics : Laser materials processing
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 14, 2013
Revised Manuscript: March 28, 2014
Manuscript Accepted: March 30, 2014
Published: April 25, 2014

Pinghui Wu, Chenghua Sui, and Wenhua Huang, "Theoretical analysis of a quasi-Bessel beam for laser ablation," Photon. Res. 2, 82-86 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008). [CrossRef]
  2. M. S. Giridhar, K. Seong, A. Schulzgen, P. Khulbe, N. Peyghambarian, and M. Mansuripur, “Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices,” Appl. Opt. 43, 4584–4589 (2004). [CrossRef]
  3. M. Ali, T. Wagner, M. Shakoor, and P. A. Molian, “Review of laser nanomachining,” J. Laser Appl. 20, 169–184 (2008). [CrossRef]
  4. W. T. Chen, M. L. Tseng, C. Y. Liao, P. C. Wu, S. Sun, Y. W. Huang, C. M. Chang, C. H. Lu, L. Zhou, D. W. Huang, A. Q. Liu, and D. P. Tsai, “Fabrication of three-dimensional plasmonic cavity by femtosecond laser-induced forward transfer,” Opt. Express 21, 618–625 (2013). [CrossRef]
  5. P. Fan, M. Zhong, L. Li, T. Huang, and H. Zhang, “Rapid fabrication of surface micro/nano structures with enhanced broadband absorption on Cu by picosecond laser,” Opt. Express 21, 11628–11637 (2013). [CrossRef]
  6. H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wahmer, and E. E. B. Campbell, “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys. A Mater. Sci. Process. 65, 367–373 (1997). [CrossRef]
  7. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, and Y. Jiang, “Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses,” Opt. Lett. 26, 1912–1914 (2001). [CrossRef]
  8. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12, 2120–2129 (2004). [CrossRef]
  9. D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16, 1517–1522 (2008). [CrossRef]
  10. S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C 113, 1156011566 (2009). [CrossRef]
  11. L. Luo, D. Wang, C. Li, H. Jiang, H. Yang, and Q. Gong, “Formation of diversiform microstructures in wide-bandgap materials by tight-focusing femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 4, 105–110 (2002). [CrossRef]
  12. S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87, 213902 (2001). [CrossRef]
  13. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002). [CrossRef]
  14. J. Schwarz and J. C. Diels, “UV filaments and their application for laser-induced lightning and high-aspect-ratio hole drilling,” Appl. Phys. A Mater. Sci. Process. 77, 185–191 (2003). [CrossRef]
  15. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007). [CrossRef]
  16. Q. Sun, H. Asahi, Y. Nishijima, N. Murazawa, K. Ueno, and H. Misawa, “Pulse duration dependent nonlinear propagation of a focused femtosecond laser pulse in fused silica,” Opt. Express 18, 24495–24503 (2010). [CrossRef]
  17. J. Durnin, J. J. Miceli, and J. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef]
  18. G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6, 150–152 (1989). [CrossRef]
  19. E. McLeod, A. B. Hopkins, and C. B. Arnold, “Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens,” Opt. Lett. 31, 3155–3157 (2006). [CrossRef]
  20. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. A 44, 592–597 (1954). [CrossRef]
  21. T. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011). [CrossRef]
  22. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001). [CrossRef]
  23. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243–245 (2002). [CrossRef]
  24. F. Courvoisier, J. Zhang, M. K. Bhuyan, M. Jacquot, and J. M. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013). [CrossRef]
  25. P. Polynkin, M. Kolesik, A. Roberts, D. Faccio, P. Di Trapani, and J. Moloney, “Generation of extended plasma channels in air using femtosecond Bessel beams,” Opt. Express 16, 15733–15740 (2008). [CrossRef]
  26. V. Jarutis, R. Paškauskas, and A. Stabinis, “Focusing of Laguerre-Gaussian beams by axicon,” Opt. Commun. 184, 105–112 (2000). [CrossRef]
  27. M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010). [CrossRef]
  28. S. Akturk, B. Zhou, B. Pasquiou, M. Franco, and A. Mysyrowicz, “Intensity distribution around the focal regions of real axicons,” Opt. Commun. 281, 4240–4244 (2008). [CrossRef]
  29. A. Michalowski, C. Freitag, R. Weber, and T. Graf, “Laser surface structuring with long depth of focus,” Proc. SPIE 7920, 79200W (2011). [CrossRef]
  30. A. Marcinkevicius, S. Juodkazis, S. Matsudo, V. Mizeikis, and H. Misawa, “Application of Bessel beams for microfabrication of dielectrics by femtosecond laser,” Jpn. J. Appl. Phys. 40, L1197 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited