OSA's Digital Library

Photonics Research

Photonics Research

| A joint OSA/Chinese Laser Press publication

  • Editor: Zhiping (James) Zhou
  • Vol. 2, Iss. 4 — Aug. 1, 2014
  • pp: B70–B79

Laser sources for microwave to millimeter-wave applications [Invited]

Gaël Kervella, Jeremy Maxin, Mickael Faugeron, Perrine Berger, Hadrien Lanctuit, Gregoire Pillet, Loïc Morvan, Frédéric van Dijk, and Daniel Dolfi  »View Author Affiliations

Photonics Research, Vol. 2, Issue 4, pp. B70-B79 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1544 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present several laser sources dedicated to advanced microwave photonic applications. A quantum-dash mode-locked laser delivering a high-power, ultra-stable pulse train is first described. We measure a linewidth below 300 kHz at a 4.3 GHz repetition rate for an output power above 300 mW and a pulse duration of 1.1 ps after compression, making this source ideal for microwave signal sampling applications. A widely tunable (5–110 GHz), monolithic millimeter-wave transceiver based on the integration of two semiconductor distributed feedback lasers, four amplifiers, and two high-speed uni-traveling carrier photodiodes is then presented, together with its application to the wireless transmission of data at 200Mb/s. A frequency-agile laser source dedicated to microwave signal processing is then described. It delivers arbitrary frequency sweeps over 20 GHz with high precision and high speed (above 400GHz/ms). Finally, we report on a low-noise (below 1 kHz linewidth), solid-state, dual-frequency laser source. It allows independent tuning of the two frequencies in the perspective of the implementation of a tunable optoelectronic oscillator based on a high-Q optical resonator.

© 2014 Chinese Laser Press

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.0250) Optoelectronics : Optoelectronics
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:

Original Manuscript: April 2, 2014
Revised Manuscript: June 24, 2014
Manuscript Accepted: June 24, 2014
Published: August 1, 2014

Virtual Issues
Microwave Photonics (2014) Photonics Research

Gaël Kervella, Jeremy Maxin, Mickael Faugeron, Perrine Berger, Hadrien Lanctuit, Gregoire Pillet, Loïc Morvan, Frédéric van Dijk, and Daniel Dolfi, "Laser sources for microwave to millimeter-wave applications [Invited]," Photon. Res. 2, B70-B79 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009). [CrossRef]
  2. D. Marpaung, C. Roeloffzen, R. Heidemann, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013). [CrossRef]
  3. R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hansch, “Clockworks and the measurement of laser frequencies with a mode-locked frequency comb,” IEEE J. Quantum Electron. 29, 739–741 (1993).
  4. G. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007). [CrossRef]
  5. A. A. Ballman, A. M. Glass, R. E. Nahory, and H. Brown, “Double doped low etch pit density InP with reduced optical absorption,” J. Cryst. Growth 62, 198–202 (1983). [CrossRef]
  6. P. B. Hansen, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. A. Newkirk, M.-D. Chien, B. Tell, and C. A. Burrus, “2  cm long monolithic multisection laser for active modelocking at 2.2  GHz,” Electron. Lett. 29, 739–741 (1993). [CrossRef]
  7. P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O’Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices and applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1698–1714 (2011). [CrossRef]
  8. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55  μm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007). [CrossRef]
  9. M. Faugeron, F. Lelarge, M. Tran, Y. Robert, E. Vinet, A. Enard, J. Jacquet, and F. van Dijk, “High peak power, narrow RF linewidth asymmetrical cladding quantum-dash mode-locked lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1101008 (2013). [CrossRef]
  10. F. van Dijk, M. Faugeron, F. Lelarge, M. Tran, M. Chtioui, Y. Robert, E. Vinet, A. Enard, and J. Jacquet, “Asymmetrical cladding quantum dash mode-locked laser for terahertz wide frequency comb,” in Proceedings of Microwave Photonics (2013), pp. 282–285.
  11. K. Sato, “Optical pulse generation using Fabry–Perot lasers under continuous-wave operation,” IEEE J. Sel. Top. Quantum Electron. 9, 1288–1293 (2003). [CrossRef]
  12. R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011). [CrossRef]
  13. A. Stöhr, “Photonic millimeter-wave generation and its applications in high data rate wireless access,” in Proceedings of Microwave Photonics (2010), pp. 7–10.
  14. E. Rouvalis, M. Cthioui, F. van Dijk, M. J. Fice, G. Carpintero, C. C. Renaud, and A. J. Seeds, “170  GHz Photodiodes for InP-based photonic integrated circuits,” in IEEE Photonics Conference (IEEE, 2012), pp. 88–89.
  15. S. Ristic, A. Bhardwaj, M. J. Rodwell, L. A. Coldren, and L. A. Johansson, “An optical phase-locked loop photonic integrated circuit,” J. Lightwave Technol. 28, 526–538 (2010). [CrossRef]
  16. F. Van Dijk, A. Accard, A. Enard, O. Drisse, D. Make, and F. Lelarge, “Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation,” in Proceedings of Microwave Photonics (2011), pp. 73–76.
  17. M. Hamacher, D. Trommer, K. Li, H. Schroeter-Janssen, W. Rehbein, and H. Heidrich, “Fabrication of a heterodyne receiver OEIC with optimized integration process using three MOVPE growth steps only,” IEEE Photon. Technol. Lett. 8, 75–77 (1996). [CrossRef]
  18. M. Lu, H. C. Park, A. Sivananthan, J. S. Parker, E. Bloch, L. A. Johansson, M. J. W. Rodwell, and L. A. Coldren, “Monolithic integration of a high-speed widely tunable optical coherent receiver,” IEEE Photon. Technol. Lett. 25, 1077–1080 (2013). [CrossRef]
  19. K. Iiyama, W. Lu-Tang, and K. Hayashi, “Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry,” J. Lightwave Technol. 14, 173–178 (1996). [CrossRef]
  20. M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001). [CrossRef]
  21. Z. Barber, W. Babbitt, B. Kaylor, R. Reibel, and P. Roos, “Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar,” Appl. Opt. 49, 213–219 (2010). [CrossRef]
  22. V. Lavielle, I. Lorgeré, J. Le Gouët, S. Tonda, and D. Dolfi, “Wideband versatile radio-frequency spectrum analyzer,” Opt. Lett. 28, 384–386 (2003). [CrossRef]
  23. C. Renner, R. Reibel, M. Tian, T. Chang, and W. R. Babbitt, “Broadband photonic arbitrary waveform generation based on spatial-spectral holographic materials,” J. Opt. Soc. Am. B 24, 2979–2987 (2007). [CrossRef]
  24. H. Linget, L. Morvan, J. Le Gouët, and A. Louchet-Chauvet, “Time reversal of optically carried radiofrequency signals in the microsecond range,” Opt. Lett. 38, 643–645 (2013). [CrossRef]
  25. O. Guillot-Noël, Ph. Goldner, E. Antic-Fidancev, A. Louchet, J.-L. Le Gouët, F. Bretenaker, and I. Lorgeré, “Quantum storage in rare-earth doped crystals for secure networks,” J. Lumin. 122–123, 526–528 (2007). [CrossRef]
  26. M. Tian, T. Chang, K. D. Merkel, W. Randall, and W. R. Babbitt, “Reconfiguration of spectral absorption features using a frequency-chirped laser pulse,” Appl. Opt. 50, 6548–6554 (2011). [CrossRef]
  27. Y. T. Chen, “Use of single-mode optical fiber in the stabilization of laser frequency,” Appl. Opt. 28, 2017–2021 (1989). [CrossRef]
  28. C. Greiner, B. Boggs, T. Wang, and T. W. Mossberg, “Laser frequency stabilization by means of optical self-heterodyne beat-frequency control,” Opt. Lett. 23, 1280–1282 (1998). [CrossRef]
  29. G. A. Cranch, “Frequency noise reduction in erbium-doped fiber distributed-feedback lasers by electronic feedback,” Opt. Lett. 27, 1114–1116 (2002). [CrossRef]
  30. V. Crozatier, G. Gorju, F. Bretenaker, J.-L. Le Gouet, I. Lorgere, C. Gagnol, and E. Ducloux, “Phase locking of a frequency agile laser,” Appl. Phys. Lett. 89, 261115 (2006). [CrossRef]
  31. G. Gorju, A. Jucha, A. Jain, V. Crozatier, I. Lorgeré, J.-L. Le Gouët, F. Bretenaker, and M. Colice, “Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control,” Opt. Lett. 32, 484–486 (2007). [CrossRef]
  32. P. Roos, R. Reibel, T. Berg, B. Kaylor, Z. Barber, and W. Babbitt, “Ultrabroadband optical chirp linearization for precision metrology applications,” Opt. Lett. 34, 3692–3694 (2009). [CrossRef]
  33. N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17, 15991–15999 (2009). [CrossRef]
  34. H. Jiang, F. Kéfélian, P. Lemonde, A. Clairon, and G. Santarelli, “An agile laser with ultra-low frequency noise and high sweep linearity,” Opt. Express 18, 3284–3297 (2010). [CrossRef]
  35. I. Lorgere, G. Gorju, L. Menager, V. Lavielle, F. Bretenaker, J.-L. Le Gouet, S. Molin, L. Morvan, S. Tonda-Goldstein, D. Dolfi, and J.-P. Huignard, “Broadband RF spectrum analyzer based on spectral hole burning microwave photonics,” in Proceedings of Microwave Photonics (2009), pp. 1–4.
  36. L. Ponnampalam, M. J. Fice, F. Pozzi, C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated photonic heterodyne system,” J. Lightwave Technol. 29, 2229–2234 (2011). [CrossRef]
  37. K. Balakier, M. J. Fice, L. Ponnampalam, C. Renaud, and A. J. Seeds, “Tunable monolithically integrated photonic THz heterodyne system,” in Proceedings of International Topical Meeting on Microwave Photonics (2012), pp. 286–289.
  38. M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable optical microwave source using spatially resolved laser eigenstates,” Opt. Lett. 22, 384–386 (1997). [CrossRef]
  39. G. W. Baxter, J. M. Dawes, P. Dekker, and S. Knowles, “Dual polarization frequency-modulated laser source,” IEEE Photon. Technol. Lett. 8, 1015–1017 (1996). [CrossRef]
  40. G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5  μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26, 2764–2773 (2008). [CrossRef]
  41. J. Maxin, G. Pillet, B. Steinhausser, L. Morvan, O. Llopis, and D. Dolfi, “Widely tunable opto-electronic oscillator based on a dual-frequency laser,” J. Lightwave Technol. 31, 2919–2925 (2013). [CrossRef]
  42. K. Saleh, P. H. Merrer, O. Llopis, and G. Cibiel, “Optoelectronic oscillator based on fiber ring resonator: overall system optimization and phase noise reduction,” in Proceedings of the IEEE International Frequency Control Symposium (IEEE, 2012), pp. 1–6.
  43. J. Le Gouët, L. Morvan, M. Alouini, J. Bourderionnet, D. Dolfi, and J. Huignard, “Dual-frequency single-axis laser using a lead lanthanum zirconate tantalate (PLZT) birefringent etalon for millimeter wave generation: beyond the standard limit of tunability,” Opt. Lett. 32, 1090–1092 (2007). [CrossRef]
  44. G. Pillet, L. Morvan, L. Manager, A. Garcia, S. Babiel, and A. Stöhr, “100  GHz phase-locked dual-frequency laser,” in Proceedings of IEEE Topical Meeting on Microwave Photonics (IEEE, 2012), pp. 1–4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited