OSA's Digital Library

Photonics Research

Photonics Research

| A joint OSA/Chinese Laser Press publication

  • Editor: Zhiping (James) Zhou
  • Vol. 1, Iss. 1 — Jun. 1, 2013
  • pp: 1–15

Self-configuring universal linear optical component

David A. B. Miller  »View Author Affiliations

Photonics Research, Vol. 1, Issue 1, pp. 1-15 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1030 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show how to design an optical device that can perform any linear function or coupling between inputs and outputs. This design method is progressive, requiring no global optimization. We also show how the device can configure itself progressively, avoiding design calculations and allowing the device to stabilize itself against drifts in component properties and to continually adjust itself to changing conditions. This self-configuration operates by training with the desired pairs of orthogonal input and output functions, using sets of detectors and local feedback loops to set individual optical elements within the device, with no global feedback or multiparameter optimization required. Simple mappings, such as spatial mode conversions and polarization control, can be implemented using standard planar integrated optics. In the spirit of a universal machine, we show that other linear operations, including frequency and time mappings, as well as nonreciprocal operation, are possible in principle, even if very challenging in practice, thus proving there is at least one constructive design for any conceivable linear optical component; such a universal device can also be self-configuring. This approach is general for linear waves, and could be applied to microwaves, acoustics, and quantum mechanical superpositions.

© 2013 Chinese Laser Press

OCIS Codes
(130.6750) Integrated optics : Systems
(230.3120) Optical devices : Integrated optics devices
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Integrated Optics

Original Manuscript: December 19, 2012
Revised Manuscript: February 26, 2013
Published: June 11, 2013

David A. B. Miller, "Self-configuring universal linear optical component [Invited]," Photon. Res. 1, 1-15 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. P. J. Lavery, A. Dudley, A. Forbes, J. Courtial, and M. J. Padgett, “Robust interferometer for the routing of light beams carrying orbital angular momentum,” New J. Phys. 13, 093014 (2011). [CrossRef]
  2. T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, and S. J. B. Yoo, “Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express 20, 9396–9402 (2012). [CrossRef]
  3. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing,” J. Lightwave Technol. 30, 521–531 (2012). [CrossRef]
  4. M. Gerken and D. A. B. Miller, “Multilayer thin-film structures with high spatial dispersion,” Appl. Opt. 42, 1330–1345 (2003). [CrossRef]
  5. M. Gerken and D. A. B. Miller, “Multilayer thin-film stacks with steplike spatial beam shifting,” J. Lightwave Technol. 22, 612–618 (2004). [CrossRef]
  6. T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11, 2693–2698 (2011). [CrossRef]
  7. V. Liu, Y. Jiao, D. A. B. Miller, and S. Fan, “Design methodology for compact photonic-crystal-based wavelength division multiplexers,” Opt. Lett. 36, 591–593 (2011). [CrossRef]
  8. R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009). [CrossRef]
  9. J. B. Khurgin, “Slow light in various media: a tutorial,” Adv. Opt. Photon. 2, 287–318 (2010). [CrossRef]
  10. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010). [CrossRef]
  11. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]
  12. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef]
  13. D. A. B. Miller, “On perfect cloaking,” Opt. Express 14, 12457–12466 (2006). [CrossRef]
  14. D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express 20, 23985–23993 (2012). [CrossRef]
  15. D. A. B. Miller, “How complicated must an optical component be?,” J. Opt. Soc. Am. A 30, 238–251 (2013). [CrossRef]
  16. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992). [CrossRef]
  17. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004). [CrossRef]
  18. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).
  19. Y. Jiao, S. H. Fan, and D. A. B. Miller, “Demonstration of systematic photonic crystal device design and optimization by low rank adjustments: an extremely compact mode separator,” Opt. Lett. 30, 141–143 (2005). [CrossRef]
  20. V. Liu, D. A. B. Miller, and S. H. Fan, “Highly tailored computational electromagnetics methods for nanophotonic design and discovery,” Proc. IEEE 101, 484–493 (2013). [CrossRef]
  21. D. A. B. Miller, “Self-aligning universal beam coupler,” Opt. Express 21, 6360–6370 (2013). [CrossRef]
  22. P. Günter, “Holography, coherent light amplification and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199–299 (1982). [CrossRef]
  23. A. Yariv, “Phase conjugate optics and real-time holography,” IEEE J. Quantum Electron. QE-14, 650–660 (1978). [CrossRef]
  24. D. A. B. Miller, “Time reversal of optical pulses by four-wave mixing,” Opt. Lett. 5, 300–302 (1980). [CrossRef]
  25. F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol. 27, 612–618 (2009). [CrossRef]
  26. F. Heismann, “Analysis of a reset-free polarization controller for fast automatic polarization stabilization in fiber-optic transmission systems,” J. Lightwave Technol. 12, 690–699 (1994). [CrossRef]
  27. F. D. Murnaghan, The Unitary and Rotation Groups (Spartan, 1962).
  28. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994). [CrossRef]
  29. D. A. B. Miller, “Communicating with waves between volumes—evaluating orthogonal spatial channels and limits on coupling strengths,” Appl. Opt. 39, 1681–1699 (2000). [CrossRef]
  30. D. A. B. Miller, Quantum Mechanics for Scientists and Engineers (Cambridge, 2008).
  31. F. Buhrer, D. Baird, and E. M. Conwell, “Optical frequency shifting by electro-optic effect,” Appl. Phys. Lett. 1, 46–49 (1962). [CrossRef]
  32. C. K. Madsen, “Boundless-range optical phase modulator for high-speed frequency-shift heterodyne applications,” J. Lightwave Technol. 24, 2760–2767 (2006). [CrossRef]
  33. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999). [CrossRef]
  34. P. P. Baveja, Y. Xiao, S. Arora, G. P. Agrawal, and D. N. Maywar, “All-optical semiconductor optical amplifier-based wavelength converters with sub-mW pumping,” IEEE Photon. Technol. Lett. 25, 78–80 (2013). [CrossRef]
  35. R. N. Mahalati, D. Askarov, J. P. Wilde, and J. M. Kahn, “Adaptive control of input field to achieve desired output intensity profile in multimode fiber with random mode coupling,” Opt. Express 20, 14321–14337 (2012). [CrossRef]
  36. P. Markov, J. G. Valentine, and S. M. Weiss, “Fiber-to-chip coupler designed using an optical transformation,” Opt. Express 20, 14705–14713 (2012). [CrossRef]
  37. D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20, 13425–13439 (2012). [CrossRef]
  38. L. H. Gabrielli and M. Lipson, “Integrated Luneburg lens via ultra-strong index gradient on silicon,” Opt. Express 19, 20122–20127 (2011). [CrossRef]
  39. M.-C. Wu, F.-C. Hsiao, and S.-Y. Tseng, “Adiabatic mode conversion in multimode waveguides using chirped computer-generated planar holograms,” IEEE Photon. Technol. Lett. 23, 807–809 (2011). [CrossRef]
  40. C. R. Doerr, N. K. Fontaine, M. Hirano, T. Sasaki, L. L. Buhl, and P. J. Winzer, “Silicon photonic integrated circuit for coupling to a ring-core multimode fiber for space-division multiplexing,” in European Conference on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.A.3.
  41. S. H. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on ‘Nonreciprocal light propagation in a silicon photonic circuit’,” Science 335, 38 (2012). [CrossRef]
  42. R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford, 2000), pp. 88–91.
  43. R. C. Alferness, “Waveguide electrooptic modulators,” IEEE Trans. Microwave Theory 30, 1121–1137 (1982). [CrossRef]
  44. Y. Fujii, “High-isolation polarization-independent optical circulator coupled with single-mode fibers,” J. Lightwave Technol. 9, 456–460 (1991). [CrossRef]
  45. Z. Wang and S. H. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett. 30, 1989–1991 (2005). [CrossRef]
  46. S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” IEEE J. Quantum Electron. 34, 2064–2079 (1998). [CrossRef]
  47. E. Palushani, H. C. Hansen Mulvad, M. Galili, H. Hu, L. K. Oxenløwe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18, 681–688 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited