OSA's Digital Library

Photonics Research

Photonics Research

| A joint OSA/Chinese Laser Press publication

  • Editor: Zhiping (James) Zhou
  • Vol. 1, Iss. 1 — Jun. 1, 2013
  • pp: 16–21

High-order sideband optical properties of a DNA–quantum dot hybrid system [Invited]

Yang Li and Kadi Zhu  »View Author Affiliations


Photonics Research, Vol. 1, Issue 1, pp. 16-21 (2013)
http://dx.doi.org/10.1364/PRJ.1.000016


View Full Text Article

Enhanced HTML    Acrobat PDF (548 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-order sideband nonlinear optical properties in a DNA–quantum dot coupled system are investigated theoretically here. In this paper, we demonstrate the significant enhancement of the third- and fifth-order optical nonlinear properties of the system by applying the pump-probe technique with pump-exciton detuning tuned to zero. It is shown clearly that these phenomena cannot occur without the DNA–quantum dot coupling, implying some potential applications like DNA detection. We can also obtain and tune the significantly amplified sideband beams at frequencies ω p ± 2 ω D . This research could provide people a deeper insight into the nonlinear optical behaviors in coupled DNA–quantum dot systems.

© 2013 Chinese Laser Press

OCIS Codes
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(270.0270) Quantum optics : Quantum optics

ToC Category:
Integrated Optics

History
Original Manuscript: February 19, 2013
Revised Manuscript: April 9, 2013
Manuscript Accepted: April 19, 2013
Published: June 11, 2013

Citation
Yang Li and Kadi Zhu, "High-order sideband optical properties of a DNA–quantum dot hybrid system [Invited]," Photon. Res. 1, 16-21 (2013)
http://www.opticsinfobase.org/prj/abstract.cfm?URI=prj-1-1-16


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. L. Falcao-Filho, B. de Araujo, and J. J. Rodrigues, “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24, 2948–2956 (2007). [CrossRef]
  2. D. Rativa, R. E. de Araujo, and A. S. L. Gomes, “Nonresonant high-order nonlinear optical properties of silver nanoparticles in aqueous solution,” Opt. Express 16, 19244–19252 (2008). [CrossRef]
  3. R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008). [CrossRef]
  4. Z. Q. Zhang, W. Q. He, C. M. Gu, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Determination of the third- and fifth-order nonlinear refractive indices in InN thin films,” Appl. Phys. Lett. 91, 221902 (2007). [CrossRef]
  5. F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274, 232–237 (2000). [CrossRef]
  6. B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, “Nonlinear optical properties of 2,4,5-trimethoxy-4-nitrochalcone: observation of two-photon-induced excited-state nonlinearities,” Opt. Express 17, 1126–1135 (2009). [CrossRef]
  7. R. A. Ganeev, A. I. Ryasnyanskii, and R. I. Tugushev, “Effect of higher order nonlinear optical processes on optical absorption in the photorefractive BSO and BGO crystals,” Opt. Spectrosc. 96, 526–531 (2004). [CrossRef]
  8. E. Koudoumas, F. Dong, S. Couris, and S. Leach, “High order nonlinear optical response of fullerene solutions in the nanosecond regime,” Opt. Commun. 138, 301–304 (1997). [CrossRef]
  9. E. Koudoumas, F. Dong, M. D. Tzatzadaki, S. Couris, and S. Leach, “High-order nonlinear optical response of C60-toluene solutions in the sub-picosecond regime,” J. Phys. B 29, L773–L778 (1996). [CrossRef]
  10. R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, and H. Kuroda, “Low- and high-order nonlinear optical characterization of C60-containing media,” Eur. Phys. J. D 64, 109–114 (2011). [CrossRef]
  11. S. T. Birendra, S. N. Serdar, and G. G. James, “Bio-organic optoelectronic devices using DNA,” Adv. Polym. Sci. 223, 189–212 (2010).
  12. Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine,” Appl. Opt. 46, 1507–1513 (2007). [CrossRef]
  13. M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431, 132–134 (2006). [CrossRef]
  14. O. Krupka, A. E. Ghayoury, I. Rau, B. Sahraoui, J. G. Grote, and F. Kajzar, “NLO properties of functionalized DNA thin films,” Thin Solid Films 516, 8932–8936 (2008). [CrossRef]
  15. C. Y. Zhang, H. C. Yeh, M. T. Kuroki, and T. H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nat. Mater. 4, 826–831 (2005). [CrossRef]
  16. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010). [CrossRef]
  17. J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011). [CrossRef]
  18. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011). [CrossRef]
  19. J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled annomechancial resonator-quantum DTO system,” Appl. Phys. Lett. 94, 063116 (2009). [CrossRef]
  20. W. He, J. J. Li, and K. D. Zhu, “Coupling-rate determination based on radiation pressure-induced normal mode splitting in cavity optomechanical systems,” Opt. Lett. 35, 339–341 (2010). [CrossRef]
  21. N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009). [CrossRef]
  22. N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010). [CrossRef]
  23. J. J. Li and K. D. Zhu, “Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system,” Nano. Res. Lett. 7, 1–7 (2012). [CrossRef]
  24. C. M. Donega, M. Bode, and A. Meijerink, “Size-and temperature-dependence of exciton lifetimes in CdSe quantum dots,” Phys. Rev. B 74, 085320 (2006). [CrossRef]
  25. C. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed. (Springer, 2000).
  26. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).
  27. H. Carmichael, Statistical Methods in Quantum Optics (Springer, 1999).
  28. H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University, 2002).
  29. C. W. Gardiner and P. Zoller, “Quantum kinetic theory. V. Quantum kinetic master equation for mutual interaction of condensate and noncondensate,” Phy. Rev. A 61, 033601 (2000). [CrossRef]
  30. G. J. Milburn, K. Jacobs, and D. F. Walls, “Quantum-limited measurements with the atomic force microscope,” Phy. Rev. A 50, 5256–5263 (1994). [CrossRef]
  31. B. H. Dorfman, “The effects of viscous water on the normal mode vibrations of DNA,” Dissert. Abstr. Int. 45, 2213 (1984).
  32. B. H. Dorfman and L. L. Zandt, “Vibration of DNA polymer in viscous solvent,” Biopolymers 22, 2639–2665 (1983).
  33. V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phy. Rev. A 63, 023812 (2001). [CrossRef]
  34. H. Xiong, L. G. Si, A. S. Zheng, X. X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012). [CrossRef]
  35. J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28, 8759–8770 (1995). [CrossRef]
  36. G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985). [CrossRef]
  37. C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008). [CrossRef]
  38. R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005). [CrossRef]
  39. B. K. Adai, “Vibrational resonances in biological systems at microwave,” Biophys. J. 82, 1147–1152 (2002). [CrossRef]
  40. M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007). [CrossRef]
  41. Y. H. Chen, L. Wang, and W. Jiang, “Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA,” Talanta 97, 533–538 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited