OSA's Digital Library

Photonics Research

Photonics Research

| A joint OSA/Chinese Laser Press publication

  • Editor: Zhiping (James) Zhou
  • Vol. 1, Iss. 1 — Jun. 1, 2013
  • pp: 22–27

Concept to devices: from plasmonic light trapping to upscaled plasmonic solar modules [Invited]

Baohua Jia, Xi Chen, Jhantu Kumar Saha, Qi Qiao, Yongqian Wang, Zhengrong Shi, and Min Gu  »View Author Affiliations


Photonics Research, Vol. 1, Issue 1, pp. 22-27 (2013)
http://dx.doi.org/10.1364/PRJ.1.000022


View Full Text Article

Enhanced HTML    Acrobat PDF (771 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The concept of using plasmonic nanostructures to manage light in solar cells has offered an unprecedented potential for dramatically increased solar energy conversion efficiency that breaks the previously predicated efficiency limit. In the past decade, intensive research efforts have been focused on this field. However, nanoplasmonic solar cells still remained in the laboratory level. To facilitate the transformation of the nanoplasmonic solar cell concept to a viable high-efficiency technology solution for the solar industry, it is essential to address key fundamental as well as practical challenges including the detrimental absorption of metallic nanostructures, narrow-band absorption enhancement in the active layer, the high cost and scarcity of noble metals, and the expensive and complicated plasmonic nanomaterial fabrication and integration methods. In this paper, after a brief review of our main results in nanoplasmonic solar cells, we present our strategies for using innovative photonic methods to overcome these challenges and demonstrate a large-area ( 173 cm 2 ) broadband plasmonic thin-film solar minimodule with an efficiency of 9.5% resulting from the enhanced plasmonic light scattering enabled by silver lumpy nanoparticles with an ultralow nanoparticle coverage density of 5%.

© 2013 Chinese Laser Press

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Nanophotonics

History
Original Manuscript: March 18, 2013
Revised Manuscript: April 17, 2013
Manuscript Accepted: April 17, 2013
Published: June 11, 2013

Citation
Baohua Jia, Xi Chen, Jhantu Kumar Saha, Qi Qiao, Yongqian Wang, Zhengrong Shi, and Min Gu, "Concept to devices: from plasmonic light trapping to upscaled plasmonic solar modules [Invited]," Photon. Res. 1, 22-27 (2013)
http://www.opticsinfobase.org/prj/abstract.cfm?URI=prj-1-1-22


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef]
  2. J. Springer, A. Poruba, L. Mullerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004). [CrossRef]
  3. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998). [CrossRef]
  4. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22, 4794–4808 (2010). [CrossRef]
  5. M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” J. Nanophoton. 1, 235–248 (2012).
  6. S. Xie, Z. Ouyang, B. Jia, and M. Gu, “Large-size, high uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells,” Opt. Express 21, A355–A362 (2013). [CrossRef]
  7. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag Nanoparticles,” Prog. Photovoltaics 18, 500–504 (2010). [CrossRef]
  8. Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010). [CrossRef]
  9. X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012). [CrossRef]
  10. N. Fahim, Z. Ouyang, Y. N. Zhang, B. H. Jia, Z. R. Shi, and M. Gu, “Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process,” Opt. Mater. Express 2, 190–204 (2012). [CrossRef]
  11. Y. N. Zhang, Z. Ouyang, N. Stokes, B. H. Jia, Z. R. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012). [CrossRef]
  12. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005). [CrossRef]
  13. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006). [CrossRef]
  14. J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011). [CrossRef]
  15. N. F. Fahim, B. H. Jia, Z. R. Shi, and M. Gu, “Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells,” Opt. Express 20, A694–A705 (2012). [CrossRef]
  16. V. E. Ferry, M. A. Verschuuren, M. C. Van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11, 4239–4245 (2011). [CrossRef]
  17. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009). [CrossRef]
  18. N. Fahim, Z. Ouyang, B. Jia, Y. Zhang, Z. Shi, and M. Gu, “Enhanced photocurrent in crystalline silicon solar cells by hybrid plasmonic antireflection coatings,” Appl. Phys. Lett. 101, 261102 (2012). [CrossRef]
  19. B. Cai, N. Stokes, B. Jia, and M. Gu, “Near-field light concentration of ultra-small metallic nanoparticles for absorption enhancement in a-Si solar cells,” Appl. Phys. Lett. 102, 093107 (2013). [CrossRef]
  20. W. Yan, N. Stokes, B. Jia, and M. Gu, “Ag nanocones enhanced plasmonic light trapping in the silicon substrate,” Opt. Lett. 38, 395–397 (2013). [CrossRef]
  21. X. Chen, B. H. Jia, J. K. Saha, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Strong broadband scattering of anisotropic plasmonic nanoparticles synthesized by controllable growth: effects of lumpy morphology,” Opt. Mater. Express 3, 27–34 (2013). [CrossRef]
  22. N. Stokes, B. H. Jia, and M. Gu, “Design of lumpy metallic nanoparticles for broadband and wide-angle light scattering,” Appl. Phys. Lett. 101, 141112 (2012). [CrossRef]
  23. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010). [CrossRef]
  24. FDTD solutions, www.lumerical.com .
  25. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009). [CrossRef]
  26. X. Chen, B. Jia, Y. Zhang, and M. Gu, “Breaking the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets,” Light Sci. Appl. (to be published).
  27. Y. Zhang, X. Chen, H. Lu, Z. Ouyang, B. Jia, and M. Gu, “Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating,” Opt. Mater. Express 3, 489–495 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited