OSA's Digital Library

Photonics Research

Photonics Research

| A joint OSA/Chinese Laser Press publication

  • Editor: Zhiping (James) Zhou
  • Vol. 1, Iss. 1 — Jun. 1, 2013
  • pp: 28–41

Microscopic and macroscopic manipulation of gold nanorod and its hybrid nanostructures [Invited]

Jiafang Li, Honglian Guo, and Zhi-Yuan Li  »View Author Affiliations


Photonics Research, Vol. 1, Issue 1, pp. 28-41 (2013)
http://dx.doi.org/10.1364/PRJ.1.000028


View Full Text Article

Enhanced HTML    Acrobat PDF (2022 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Gold nanorods (GNRs) have potential applications ranging from biomedical sciences and emerging nanophotonics. In this paper, we will review some of our recent studies on both microscopic and macroscopic manipulation of GNRs. Unique properties of GNR nanoparticles, such as efficient surface plasmon amplifications effects, are introduced. The stable trapping, transferring, positioning and patterning of GNRs with nonintrusive optical tweezers will be shown. Vector beams are further employed to improve the trapping performance. On the other hand, alignment of GNRs and their hybrid nanostructures will be described by using a film stretch method, which induces the anisotropic and enhanced absorptive nonlinearities from aligned GNRs. Realization and engineering of polarized emission from aligned hybrid GNRs will be further demonstrated, with relative excitation–emission efficiency significantly enhanced. Our works presented in this review show that optical tweezers possess great potential in microscopic manipulation of metal nanoparticles and macroscopic alignment of anisotropic nanoparticles could help the macroscopic samples to flexibly represent the plasmonic properties of single nanoparticles for fast, cheap, and high-yield applications.

© 2013 Chinese Laser Press

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Nanophotonics

History
Original Manuscript: February 28, 2013
Revised Manuscript: April 24, 2013
Manuscript Accepted: April 24, 2013
Published: June 11, 2013

Citation
Jiafang Li, Honglian Guo, and Zhi-Yuan Li, "Microscopic and macroscopic manipulation of gold nanorod and its hybrid nanostructures [Invited]," Photon. Res. 1, 28-41 (2013)
http://www.opticsinfobase.org/prj/abstract.cfm?URI=prj-1-1-28


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685–1706 (2004). [CrossRef]
  2. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007). [CrossRef]
  3. Z. Y. Li, “Nanophotonics in China: overviews and highlights,” Front. Phys. 7, 601–631 (2012). [CrossRef]
  4. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997). [CrossRef]
  5. M. Hu, H. Petrova, A. R. Sekkinen, J. Chen, J. M. McLellan, Z.-Y. Li, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Optical properties of Au–Ag nanoboxes studied by single nanoparticle spectroscopy,” J. Phys. Chem. B 110, 19923–19928 (2006). [CrossRef]
  6. M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006). [CrossRef]
  7. X. H. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21, 4880–4910 (2009). [CrossRef]
  8. M. T. Castaneda, S. Alegret, and A. Merkoci, “Electrochemical sensing of DNA using gold nanoparticles,” Electroanalysis 19, 743–753 (2007). [CrossRef]
  9. X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012). [CrossRef]
  10. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459, 410–413 (2009). [CrossRef]
  11. A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9, 1651–1658 (2009). [CrossRef]
  12. J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005). [CrossRef]
  13. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010). [CrossRef]
  14. Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramaticallyenhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011). [CrossRef]
  15. D. J. Wu, S. M. Jiang, Y. Cheng, and X. J. Liu, “Fano-like resonance in symmetry-broken gold nanotube dimer,” Opt. Express 20, 26559–26567 (2012). [CrossRef]
  16. J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. F. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010). [CrossRef]
  17. J. Li, S. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96, 263103 (2010). [CrossRef]
  18. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998). [CrossRef]
  19. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003). [CrossRef]
  20. F. Kim, J. H. Song, and P. D. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124, 14316–14317 (2002). [CrossRef]
  21. T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, and C. H. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9, 3896–3903 (2009). [CrossRef]
  22. X. Li, F. J. Kao, C. C. Chuang, and S. L. He, “Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and two-photon excitation,” Opt. Express 18, 11335–11346 (2010). [CrossRef]
  23. S. Y. Liu, J. F. Li, F. Zhou, L. Gan, and Z. Y. Li, “Efficient surface plasmon amplification from gain-assisted gold nanorods,” Opt. Lett. 36, 1296–1298 (2011). [CrossRef]
  24. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003). [CrossRef]
  25. J. A. Gordon and R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Opt. Express 15, 2622–2653 (2007). [CrossRef]
  26. X. F. Li and S. F. Yu, “Design of low-threshold compact Au-nanoparticle lasers,” Opt. Lett. 35, 2535–2537 (2010). [CrossRef]
  27. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008). [CrossRef]
  28. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009). [CrossRef]
  29. Z. Y. Li and Y. N. Xia, “Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering,” Nano Lett. 10, 243–249 (2010). [CrossRef]
  30. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008). [CrossRef]
  31. Y. H. Chen, J. F. Li, M. L. Ren, B. L. Wang, J. X. Fu, S. Y. Liu, and Z. Y. Li, “Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces,” Appl. Phys. Lett. 98, 261912 (2011). [CrossRef]
  32. Y. H. Chen, J. F. Li, M. L. Ren, and Z. Y. Li, “Amplified spontaneous emission of surface plasmon polaritons with unusual angle-dependent response,” Small 8, 1355–1359 (2012). [CrossRef]
  33. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997). [CrossRef]
  34. J.-D. Wen, M. Manosas, P. T. X. Li, S. B. Smith, C. Bustamante, F. Ritort, and I. Tinoco, “Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results,” Biophys. J. 92, 2996–3009 (2007). [CrossRef]
  35. P. Bechtluft, R. G. H. van Leeuwen, M. Tyreman, D. Tomkiewicz, N. Nouwen, H. L. Tepper, A. J. M. Driessen, and S. J. Tans, “Direct observation of chaperone-induced changes in a protein folding pathway,” Science 318, 1458–1461 (2007). [CrossRef]
  36. R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J. 70, 1813–1822 (1996). [CrossRef]
  37. W. R. Bowen and A. O. Sharif, “Long-range electrostatic attraction between like-charge spheres in a charged pore,” Nature 393, 663–665 (1998). [CrossRef]
  38. W. Wen, L. Zhang, and P. Sheng, “Planar magnetic colloidal crystals,” Phys. Rev. Lett. 85, 5464–5467 (2000). [CrossRef]
  39. A. A. R. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragò, and D. Pisignano, “Rotational dynamics of optically trapped nanofibers,” Opt. Express 18, 822–830 (2010). [CrossRef]
  40. L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10, 268–273 (2010). [CrossRef]
  41. L. Ling, H. L. Guo, L. Huang, E. Qu, Z. L. Li, and Z. Y. Li, “The measurement of displacement and optical force in multi-optical tweezers,” Chin. Phys. Lett. 29, 014214 (2012). [CrossRef]
  42. R. A. Nome, M. J. Guffey, N. F. Scherer, and S. K. Gray, “Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers,” J. Phys. Chem. A 113, 4408–4415 (2009). [CrossRef]
  43. L. Ling, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302 (2012). [CrossRef]
  44. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004). [CrossRef]
  45. J.-Q. Qin, X.-L. Wang, D. Jia, J. Chen, Y.-X. Fan, J. Ding, and H.-T. Wang, “FDTD approach to optical forces of tightly focused vector beams on metal particles,” Opt. Express 17, 8407–8416 (2009). [CrossRef]
  46. A. Huss, A. M. Chizhik, R. Jäger, A. I. Chizhik, and A. J. Meixner, “Optical trapping of gold nanoparticles using a radially polarized laser beam,” Proc. SPIE 8097, 809720 (2011). [CrossRef]
  47. L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z.-Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37, 1694–1696 (2012). [CrossRef]
  48. F. Peng, B. Yao, S. Yan, W. Zhao, and M. Lei, “Trapping of low-refractive-index particles with azimuthally polarized beam,” J. Opt. Soc. Am. B 26, 2242–2247 (2009). [CrossRef]
  49. S. Y. Liu, J. F. Li, and Z. Y. Li, “Macroscopic polarized emission from aligned hybrid gold nanorods embedded in a polyvinyl alcohol film,” Adv. Opt. Mater. 1, 227–231 (2013). [CrossRef]
  50. B. M. I. van der Zande, L. Pages, R. A. M. Hikmet, and A. van Blaaderen, “Optical properties of aligned rod-shaped gold particles dispersed in poly(vinyl alcohol) films,” J. Phys. Chem. B 103, 5761–5767 (1999). [CrossRef]
  51. D. Fornasiero and F. Grieser, “A linear dichroism study of colloidal silver in stretched polymer-films,” Chem. Phys. Lett. 139, 103–108 (1987). [CrossRef]
  52. M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990). [CrossRef]
  53. R. West, Y. Wang, and T. Goodson, “Nonlinear absorption properties in novel gold nanostructured topologies,” J. Phys. Chem. B 107, 3419–3426 (2003). [CrossRef]
  54. L. Francois, M. Mostafavi, J. Belloni, and J. A. Delaire, “Optical limitation induced by gold clusters: mechanism and efficiency,” Phys. Chem. Chem. Phys 3, 4965–4971 (2001). [CrossRef]
  55. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003). [CrossRef]
  56. K. Kogo, T. Goda, M. Funahashi, and J. Hanna, “Polarized light emission from a calamitic liquid crystalline semiconductor doped with dyes,” Appl. Phys. Lett. 73, 1595–1597 (1998). [CrossRef]
  57. K. S. Whitehead, M. Grell, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, “Polarized emission from liquid crystal polymers,” Synth. Met. 111, 181–185 (2000). [CrossRef]
  58. M. Sukharev and T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett. 6, 715–719 (2006). [CrossRef]
  59. H. H. Fang, Q. D. Chen, J. Yang, H. Xia, Y. G. Ma, H. Y. Wang, and H. B. Sun, “Two-photon excited highly polarized and directional upconversion emission from slab organic crystals,” Opt. Lett. 35, 441–443 (2010). [CrossRef]
  60. F. Di Stasio, P. Korniychuk, S. Brovelli, P. Uznanski, S. O. McDonnell, G. Winroth, H. L. Anderson, A. Tracz, and F. Cacialli, “Highly polarized emission from oriented films incorporating water-soluble conjugated polymers in a polyvinyl alcohol matrix,” Adv. Mater. 23, 1855–1859 (2011). [CrossRef]
  61. C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92, 243118 (2008). [CrossRef]
  62. S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012). [CrossRef]
  63. H. J. Chen, T. A. Ming, L. Zhao, F. Wang, L. D. Sun, J. F. Wang, and C. H. Yan, “Plasmon-molecule interactions,” Nano Today 5, 494–505 (2010). [CrossRef]
  64. T. Ming, L. Zhao, H. J. Chen, K. C. Woo, J. F. Wang, and H. Q. Lin, “Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures,” Nano Lett. 11, 2296–2303 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited