OSA's Digital Library

Photonics Research

Photonics Research

| A joint OSA/Chinese Laser Press publication

  • Editor: Zhiping (James) Zhou
  • Vol. 1, Iss. 2 — Aug. 1, 2013
  • pp: 69–76

Germanium tin: silicon photonics toward the mid-infrared [Invited]

E. Kasper, M. Kittler, M. Oehme, and T. Arguirov  »View Author Affiliations

Photonics Research, Vol. 1, Issue 2, pp. 69-76 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1007 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Germanium tin (GeSn) is a group IV semiconductor with a direct band-to-band transition below 0.8 eV. Nonequilibrium GeSn alloys up to 20% Sn content were realized with low temperature (160°C) molecular beam epitaxy. Photodetectors and light emitting diodes (LEDs) were realized from in situ doped pin junctions in GeSn on Ge virtual substrates. The detection wavelength for infrared radiation was extended to 2 μm with clear potential for further extension into the mid-infrared. GeSn LEDs with Sn content of up to 4% exhibit light emission from the direct band transition, although GeSn with low Sn content is an indirect semiconductor. The photon emission energies span the region between 0.81 and 0.65 eV. Optical characterization techniques such as ellipsometry, in situ reflectometry, and Raman spectroscopy were used to monitor the Sn incorporation in GeSn epitaxy.

© 2013 Chinese Laser Press

OCIS Codes
(040.5160) Detectors : Photodetectors
(140.3380) Lasers and laser optics : Laser materials
(230.3670) Optical devices : Light-emitting diodes

ToC Category:
Silicon Photonics

Original Manuscript: March 14, 2013
Revised Manuscript: May 3, 2013
Manuscript Accepted: May 9, 2013
Published: July 19, 2013

E. Kasper, M. Kittler, M. Oehme, and T. Arguirov, "Germanium tin: silicon photonics toward the mid-infrared [Invited]," Photon. Res. 1, 69-76 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Kasper, “Prospects and challenges of silicon/germanium on-chip optoelectronics,” Front. Optoelectron. China 3, 143–152 (2009).
  2. S. Klinger, M. Berroth, M. Kaschel, M. Oehme, and E. Kasper, “Ge on Si p-i-n photodiodes with a 3 dB bandwidth of 49 GHz,” IEEE Photon. Technol. Lett. 21, 920–922 (2009). [CrossRef]
  3. M. Ziebell, D. Marris-Morini, G. Rasigade, J. M. Fédéli, E. Cassan, and L. Vivien, “40  Gb/s low-loss self-aligned silicon optical modulator,” Proc. SPIE 8629, 86290Q (2013). [CrossRef]
  4. E. Kasper and M. Oehme, “Optoelectronic application of Si/Ge heterostructures,” Phys. Status Solidi C6, 700–703 (2009).
  5. M. Schmid, M. Kaschel, M. Gollhofer, M. Oehme, J. Werner, E. Kasper, and J. Schulze, “Franz–Keldysh effect of germanium-on-silicon p–i–n diodes within a wide temperature range,” Thin Solid Films 525, 110–114 (2012). [CrossRef]
  6. J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520, 3354–3360 (2012). [CrossRef]
  7. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20, 11316–11320 (2012). [CrossRef]
  8. G. Grzybowski, R. Roucka, J. Mathews, L. Jiang, R. T. Beeler, J. Kouvetakis, and J. Menéndez, “Direct versus indirect optical recombination in Ge films grown on Si substrates,” Phys. Rev. B 84, 205307 (2011). [CrossRef]
  9. A. K. Okyay, “Si-Ge photodetection technologies for integrated optoelectronics,” Ph.D. dissertation (Stanford University, 2007).
  10. R. Soref, “Group IV photonics for the mid infrared,” Proc. SPIE 8629, 862902 (2013). [CrossRef]
  11. E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films 520, 3195–3200 (2012). [CrossRef]
  12. S. Su, ISCAS, Beijing (personal communication, 2011).
  13. R. F. C. Farrow, D. S. Robertson, G. M. Williams, A. G. Cullis, G. R. Jones, I. M. Young, and P. N. J. Dennis, “The growth of metastable, heteroepitaxial films of alpha-Sn by metal beam epitaxy,” J. Cryst. Growth 54, 507–518 (1981). [CrossRef]
  14. A. Harwit, P. R. Pukite, J. Angilello, and S. S. Iyer, “Properties of diamond structure SnGe films grown by molecular beam epitaxy,” Thin Solid Films 184, 395–401 (1990). [CrossRef]
  15. M. T. Asom, A. R. Kortan, L. C. Kimerling, and R. C. Farrow, “Structure and stability of metastable alpha-Sn,” Appl. Phys. Lett. 55, 1439–1441 (1989). [CrossRef]
  16. J. L. Reno and L. L. Stephenson, “Effect of growth-conditions on the stability of alpha-Sn grown on CdTe by molecular beam epitaxy,” Appl. Phys. Lett. 54, 2207–2209 (1989). [CrossRef]
  17. P. R. Pukite, A. Harwit, and S. S. Iyer, “Molecular beam epitaxy of metastable, diamond structure SnxGe1−x alloys,” Appl. Phys. Lett. 54, 2142–2144 (1989). [CrossRef]
  18. S. I. Shah, J. E. Greene, L. L. Abels, Y. Qi, and P. M. Raccah, “Growth of single-crystal metastable Ge1−xSnx alloys on Ge(100) and GaAs(100) substrates,” J. Cryst. Growth 83, 3–10 (1987). [CrossRef]
  19. M. T. Asom, E. A. Fitzgerald, A. R. Kortan, B. Spear, and L. C. Kimerling, “Epitaxial growth of metastable SnGe alloys,” Appl. Phys. Lett. 55, 578–579 (1989). [CrossRef]
  20. W. Wegscheider, K. Eberl, U. Menczigar, and G. Abstreiter, “Single-crystal Sn/Ge superlattices on Ge substrates: growth and structural properties,” Appl. Phys. Lett. 57, 875–877 (1990). [CrossRef]
  21. W. Dondl, E. Silveira, and G. Abstreiter, “MBE growth of ternary SnGeSiGe superlattices,” J. Cryst. Growth 157, 400–404 (1995). [CrossRef]
  22. M. E. Taylor, G. He, H. A. Atwater, and A. Polman, “Solid phase epitaxy of diamond cubic SnxGe1−x alloys,” J. Appl. Phys. 80, 4384–4388 (1996). [CrossRef]
  23. S. Takeuchi, A. Sakai, K. Yamamoto, O. Nakatsuka, M. Ogawa, and S. Zaima, “Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates,” Semicond. Sci. Technol. 22, S231–S235 (2007). [CrossRef]
  24. M. Yamazaki, S. Takeuchi, O. Nakatsuka, A. Sakai, M. Ogawa, and S. Zaima, “Scanning tunneling microscopy observation of initial growth of Sn and Ge1−xSnx layers on Ge(001) substrates,” Appl. Surf. Sci. 254, 6048–6051 (2008). [CrossRef]
  25. C. S. Cook, S. Zollner, M. R. Bauer, P. Aella, John Kouvetakis, and J. Menendez, “Optical constants and interband transitions of Ge1−xSnx alloys (x−0.2) grown on Si by UHV-CVD,” Thin Solid Films 455–456, 217–221 (2004). [CrossRef]
  26. J. Kouvetakis and A. V. G. Chizmeshya, “New classes of Si-based photonic materials and device architectures via designer molecular routes,” J. Mater. Chem. 17, 1649–1655 (2007). [CrossRef]
  27. J. Tolle, A. V. G. Chizmeshya, Y. Y. Fang, J. Kouvetakis, V. R. D’Costa, C. W. Hu, J. Menendez, and I. S. T. Tsong, “Low temperature chemical vapor deposition of Si-based compounds via SiH3SiH2SiH3: metastable SiSn/GeSn/Si(100) heteroepitaxial structures,” Appl. Phys. Lett. 89, 231924 (2006). [CrossRef]
  28. H. P. L. de Guevara, H. Navarro-Contreras, and M. A. Vidal, “Growth and characterization of Ge1−xSnx alloys grown by magnetron sputter deposition,” Superficies y Vacio 16, 22–24 (2003).
  29. J. Xie, J. Tolle, V. R. D’Costa, C. Weng, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular approaches to p-and n-nanoscale doping of Ge1−ySny semiconductors: structural, electrical and transport properties,” Solid State Electron. 53, 816–823 (2009).
  30. H. Jorke, Segregation of Ge and dopant atoms during growth of SiGe layers in Properties of Strained and Relaxed SiGe, E. Kasper and K. Lyutovich eds. (INSPEC, Institution of Electrical Engineers, 2000), pp. 287–301.
  31. M. Oehme and E. Kasper, “Abrupt boron profiles by Silicon-MBE,” Int. J. Mod. Phys. B 16, 4285–4288 (2002). [CrossRef]
  32. H. J. Gossmann, “Determination of critical layer thicknesses in IV-IV-alloy systems using reflection high energy electron diffraction intensity oscillations: Ge(100)/GexSn1−x,” J. Appl. Phys. 68, 2791–2795 (1990). [CrossRef]
  33. H. Jorke, H. Kibbel, K. Strohm, and E. Kasper, “Forward-bias characteristics of Si bipolar junctions grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 63, 2408–2410 (1993). [CrossRef]
  34. M. Bauer, M. Oehme, and E. Kasper, “Crystalline to amorphous phase transition in very low temperature molecular beam epitaxy,” Mater. Sci. Eng. B 89, 263–268 (2002). [CrossRef]
  35. K. A. Bratland, Y. L. Foo, T. Spila, H. S. Seo, R. T. Haasch, P. Desgardins, and J. E. Greene, “Sn-mediated Ge/Ge(001) growth by low-temperature molecular-beam epitaxy: surface smoothening and enhanced epitaxial thickness,” J. Appl. Phys. 97, 044904 (2005). [CrossRef]
  36. V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menéndez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C-and L-telecommunication bands,” Semicond. Sci. Technol. 24, 115006 (2009). [CrossRef]
  37. A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20, 27297–27303 (2012). [CrossRef]
  38. M. Oehme, E. Kasper, and J. Schulze, “GeSn photodetection and electroluminescence devices on Si,” ECS Trans. 50, 583–590 (2012). [CrossRef]
  39. E. Kasper, M. Kittler, T. Arguirov, and M. Oehme, “Light from GeSn heterostructures on Si,” Proc. SPIE 8628, 86280J (2013). [CrossRef]
  40. V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: a comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B 73, 125207 (2006). [CrossRef]
  41. K. Alberi, J. Blacksberg, L. D. Bell, S. Nikzad, K. M. Yu, O. D. Dubon, and W. Walukiewicz, “Band anticrossing in highly mismatched SnxGe1−x semiconducting alloys,” Phys. Rev. B 77, 073202 (2008). [CrossRef]
  42. H. Lin, R. Chen, W. Lu, Y. Huo, T. Kamins, and J. Harris, “Investigation of the direct band gaps in Ge1−xSnx alloys with strain control by photoreflectance spectroscopy,” Appl. Phys. Lett. 100, 102109 (2012). [CrossRef]
  43. M. Oehme, J. Werner, M. Gollhofer, M. Schmid, M. Kaschel, E. Kasper, and J. Schulze, “Room-temperature electroluminescence from GeSn light-emitting pin diodes on Si,” IEEE Photon. Technol. Lett. 23, 1751–1753 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited