OSA's Digital Library

Photonics Research

Photonics Research

| A joint OSA/Chinese Laser Press publication

  • Editor: Zhiping (James) Zhou
  • Vol. 1, Iss. 3 — Oct. 1, 2013
  • pp: 115–123

All-optical regeneration of polarization of a 40 Gbit/s return-to-zero telecommunication signal [Invited]

J. Fatome, D. Sugny, S. Pitois, P. Morin, M. Guasoni, A. Picozzi, H. R. Jauslin, C. Finot, G. Millot, and S. Wabnitz  »View Author Affiliations


Photonics Research, Vol. 1, Issue 3, pp. 115-123 (2013)
http://dx.doi.org/10.1364/PRJ.1.000115


View Full Text Article

Enhanced HTML    Acrobat PDF (980 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report all-optical regeneration of the state of polarization of a 40Gbit/s return-to-zero telecommunication signal. The device discussed here consists of a 6.2-km-long nonzero dispersion-shifted fiber, with low polarization mode dispersion, pumped from the output end by a backward propagating wave coming from either an external continuous source or a reflection of the signal. An initially scrambled signal acquires a degree of polarization close to 100% toward the polarization generator output. All-optical regeneration is confirmed by means of polarization and bit-error-rate measurements as well as real-time observation of the eye diagrams. We show that the physical mechanism underlying the observed four-wave-mixing-based polarization attraction phenomenon can be described in terms of the geometric approach developed for the study of Hamiltonian singularities.

© 2013 Chinese Laser Press

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(230.4320) Optical devices : Nonlinear optical devices
(250.4745) Optoelectronics : Optical processing devices

ToC Category:
Optical Communications

History
Original Manuscript: May 3, 2013
Revised Manuscript: July 5, 2013
Manuscript Accepted: July 13, 2013
Published: September 19, 2013

Citation
J. Fatome, D. Sugny, S. Pitois, P. Morin, M. Guasoni, A. Picozzi, H. R. Jauslin, C. Finot, G. Millot, and S. Wabnitz, "All-optical regeneration of polarization of a 40 Gbit/s return-to-zero telecommunication signal [Invited]," Photon. Res. 1, 115-123 (2013)
http://www.opticsinfobase.org/prj/abstract.cfm?URI=prj-1-3-115


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Reimer, D. Dumas, G. Soliman, D. Yevick, and M. O’Sullivan, “Polarization evolution in dispersion compensation modules,” presented at the Optical Fiber Communications/National Fiber Optic Engineers Conference (OFC/NFOEC), San Diego, California, March22–26, 2009, paper OWD4.
  2. R. Noe, H. Heidrich, and D. Hoffmann, “Endless polarization control systems for coherent optics,” J. Lightwave Technol. 6, 1199–1208 (1988). [CrossRef]
  3. N. G. Walker and G. R. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990). [CrossRef]
  4. M. Martinelli, P. Martelli, and S. M. Pietralunga, “Polarization stabilization in optical communications systems,” J. Lightwave Technol. 24, 4172–4183 (2006). [CrossRef]
  5. B. Koch, R. Noe, V. Mirvoda, H. Griesser, S. Bayer, and H. Wernz, “Record 59 krad/s polarization tracking in 112 Gb/s 640 km PDM-RZ-DQPSK transmission,” IEEE Photon. Technol. Lett. 22, 1407–1409 (2010). [CrossRef]
  6. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16, 804–817 (2008). [CrossRef]
  7. S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16, 1164–1179 (2010). [CrossRef]
  8. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249–1251 (2003). [CrossRef]
  9. F. Van Laere, T. Stomeo, D. Taillaert, G. Roelkens, D. Van Thourhout, T. F. Krauss, and R. Baets, “Efficient polarization diversity grating couplers in bonded InP-membrane,” IEEE Photon. Technol. Lett. 20, 318–320 (2008). [CrossRef]
  10. V. E. Zakharov and A. V. Mikhailov, “Polarization domains in nonlinear optics,” JETP Lett. 45, 349 (1987).
  11. S. Pitois, G. Millot, and S. Wabnitz, “Polarization domain wall solitons with counterpropagating laser beams,” Phys. Rev. Lett. 81, 1409–1412 (1998). [CrossRef]
  12. S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear polarization dynamics of counterpropagating waves in an isotropic optical fiber: theory and experiments,” J. Opt. Soc. Am. B 18, 432–443 (2001). [CrossRef]
  13. J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18, 15311–15317 (2010). [CrossRef]
  14. P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40 Gbit/s regeneration applications,” Opt. Express 19, 17158–17166 (2011). [CrossRef]
  15. J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-light polarization control of 10 Gb/s RZ and NRZ telecommunication signals,” IEEE J. Sel. Top. Quantum Electron. 18, 621–628 (2012). [CrossRef]
  16. J. Fatome, S. Pitois, P. Morin, E. Assémat, D. Sugny, A. Picozzi, H. R. Jauslin, G. Millot, V. V. Kozlov, and S. Wabnitz, “A universal optical all-fiber omnipolarizer,” Sci. Rep. 2, 938 (2012). [CrossRef]
  17. S. Pitois and M. Haelterman, “Optical fiber polarization funnel,” in Nonlinear Guided Waves and Their Applications, OSA Technical Digest (Optical Society of America, 2001), paper MC79, pp. 278–280.
  18. M. Martinelli, M. Cirigliano, M. M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express 17, 947–955 (2009). [CrossRef]
  19. N. Muga, M. Ferreira, and A. Pinto, “Broadband polarization pulling using Raman amplification,” Opt. Express 19, 18707–18712 (2011). [CrossRef]
  20. F. Chiarello, L. Palmieri, M. Santagiustina, R. Gamatham, and A. Galtarossa, “Experimental characterization of the counter-propagating Raman polarization attraction,” Opt. Express 20, 26050–26055 (2012). [CrossRef]
  21. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008). [CrossRef]
  22. Z. Shmilovitch, N. Primerov, A. Zadok, A. Eyal, S. Chin, L. Thévenaz, and M. Tur, “Dual-pump push-pull polarization control using stimulated Brillouin scattering,” Opt. Express 19, 25873–25880 (2011). [CrossRef]
  23. J. Fatome, S. Pitois, and G. Millot, “Experimental evidence of Brillouin-induced polarization wheeling in highly birefringent optical fibers,” Opt. Express 17, 12612–12618 (2009). [CrossRef]
  24. S. Pitois, A. Sauter, and G. Millot, “Simultaneous achievement of polarization attraction and Raman amplification in isotropic optical fibers,” Opt. Lett. 29, 599–601 (2004). [CrossRef]
  25. S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, “Polarization and modal attractors in conservative counterpropagating four-wave interaction,” Europhys. Lett. 70, 88 (2005). [CrossRef]
  26. S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16, 6646–6651 (2008). [CrossRef]
  27. V. V. Kozlov, J. Nuno, and S. Wabnitz, “Theory of lossless polarization attraction in telecommunication fiber,” J. Opt. Soc. Am. B 28, 100–108 (2011). [CrossRef]
  28. V. V. Kozlov, J. Fatome, P. Morin, S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear repolarization dynamics in optical fibers: transient polarization attraction,” J. Opt. Soc. Am. B 28, 1782–1791 (2011). [CrossRef]
  29. V. V. Kozlov, J. Fatome, P. Morin, S. Pitois, and S. Wabnitz, “Nonlinear optical fiber polarization tracking at 200 krad/s,” presented at the 37th European Conference on Optical Communication (ECOC), 2011, Geneve, Switzerland, September18–22, 2011.
  30. V. V. Kozlov and S. Wabnitz, “Theoretical study of polarization attraction in high-birefringence and spun fibers,” Opt. Lett. 35, 3949–3951 (2010). [CrossRef]
  31. V. V. Kozlov, K. Turitsyn, and S. Wabnitz, “Nonlinear repolarization in optical fibers: polarization attraction with copropagating beams,” Opt. Lett. 36, 4050–4052 (2011). [CrossRef]
  32. V. V. Kozlov, M. Barozzi, A. Vannucci, and S. Wabnitz, “Lossless polarization attraction of co-propagating beams in telecom fibers,” J. Opt. Soc. Am. B 30, 530–540 (2013). [CrossRef]
  33. R. H. Cushman and L. M. Bates, Global Aspects of Classical Integrable Systems (Birkhauser, 1997).
  34. D. Sugny, A. Picozzi, S. Lagrange, and H. R. Jauslin, “On the role of singular tori in the spatio-temporal dynamics of nonlinear wave systems,” Phys. Rev. Lett. 103, 034102 (2009). [CrossRef]
  35. S. Lagrange, D. Sugny, A. Picozzi, and H. R. Jauslin, “Singular tori as attractors of four-wave-interaction systems,” Phys. Rev. E 81, 016202 (2010). [CrossRef]
  36. E. Assémat, A. Picozzi, H. R. Jauslin, and D. Sugny, “Hamiltonian tools for the analysis of optical polarization system,” J. Opt. Soc. Am. B 29, 559–571 (2012). [CrossRef]
  37. E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D. Sugny, “Complete nonlinear polarization control in an optical fiber system,” Opt. Lett. 35, 2025–2027 (2010). [CrossRef]
  38. E. Assémat, D. Dargent, A. Picozzi, H. R. Jauslin, and D. Sugny, “Polarization control in spun and telecommunication optical fibers,” Opt. Lett. 36, 4038–4040 (2011). [CrossRef]
  39. K. Efstathiou and D. A. Sadovskii, “Normalization and global analysis of perturbations of the hydrogen atom,” Rev. Mod. Phys. 82, 2099–2154 (2010). [CrossRef]
  40. V. V. Kozlov and S. Wabnitz, “Instability of optical solitons in the boundary value problem for a medium of finite extension,” Lett. Math. Phys. 96, 405–413 (2011). [CrossRef]
  41. E. Assemat, A. Picozzi, H. R. Jauslin, and D. Sugny, “Instabilities of optical solitons and Hamiltonian singular solutions in a medium of finite extension,” Phys. Rev. A 84, 013809 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited