OSA's Digital Library

Photonics Research

Photonics Research

| A joint OSA/Chinese Laser Press publication

  • Editor: Zhiping (James) Zhou
  • Vol. 1, Iss. 3 — Oct. 1, 2013
  • pp: 124–129

Flood-illuminated adaptive optics ophthalmoscope with a single curved relay mirror

Ruixue Liu, Yue Qi, Xianliang Zheng, Mingliang Xia, and Li Xuan  »View Author Affiliations

Photonics Research, Vol. 1, Issue 3, pp. 124-129 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (872 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For decreasing light loss and diminishing the aberrations of the optical system, an open-loop adaptive optics (AO) system for retinal imaging in vivo is introduced. Taking advantage of the ability of young human eyes to accommodate, there was only one single curved mirror to make the pupil of the eye conjugate with the wavefront corrector and the wavefront sensor. A liquid crystal spatial light modulator (LC-SLM) was adopted as the wavefront corrector because the LC-SLM can be made in a small size to match the sensor. To reduce a pair of lenses or focusing mirrors, the wavefront corrector and sensor are positioned in the noncommon path. The system adopts open-loop control and the high-precision LC-SLM guarantees the effectiveness of the AO system. The designed field of view is 1° on the retina (about 300 μm). The image quality was simulated with different mirror surface types, including circular, parabolic, and hyperbolic. A hyperbolic mirror with conic constant 1.07, which is close to 1, could best eliminate the aberrations. Theoretical analysis showed that the optical throughput of this system was at least 22.4% higher than that of a standard transmission AO system. In a practical experiment, a parabolic mirror was positioned in the optical path. Images of the cone photoreceptors and the capillary vessels were obtained successfully. This system simplifies the optical setup in comparison to the commonly used 4F systems while still guaranteeing the effectiveness of AO to correct the ocular aberrations.

© 2013 Chinese Laser Press

OCIS Codes
(220.4830) Optical design and fabrication : Systems design
(110.1085) Imaging systems : Adaptive imaging

ToC Category:
Adaptive Optics

Original Manuscript: July 5, 2013
Revised Manuscript: August 1, 2013
Manuscript Accepted: August 28, 2013
Published: September 30, 2013

Ruixue Liu, Yue Qi, Xianliang Zheng, Mingliang Xia, and Li Xuan, "Flood-illuminated adaptive optics ophthalmoscope with a single curved relay mirror," Photon. Res. 1, 124-129 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A.  Roorda, D. R.  Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999). [CrossRef]
  2. J. I.  Wolfing, M.  Chung, J.  Carroll, A.  Roorda, D. R.  Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113, 1014 (2006). [CrossRef]
  3. J. A.  Martin, A.  Roorda, “Pulsatility of parafoveal capillary leukocytes,” Exp. Eye Res. 88, 356–360 (2009). [CrossRef]
  4. J. M.  Gelfand, J. L.  Duncan, C. A.  Racine, L. A.  Gillum, C. T.  Chin, Y.  Zhang, Q.  Zhang, L. J.  Wong, A.  Roorda, A. J.  Green, “Heterogeneous patterns of tissue injury in NARP syndrome,” J. Neurol. 258, 440–448 (2011). [CrossRef]
  5. J. L.  Duncan, K.  Ratnam, D. G.  Birch, S. M.  Sundquist, A. S.  Lucero, Y.  Zhang, M.  Meltzer, N.  Smaoui, A.  Roorda, “Abnormal cone structure in foveal schisis cavities in X-linked retinoschisis from mutations in exon 6 of the RS1 gene,” Investig. Ophthalmol. Vis. Sci. 52, 9614–9623 (2011). [CrossRef]
  6. R. S.  Jonnal, O. P.  Kocaoglu, Q.  Wang, S.  Lee, D. T.  Miller, “Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics,” Biomed. Opt. Express 3, 104–124 (2012). [CrossRef]
  7. J. L.  Duncan, A.  Roorda, M.  Navani, S.  Vishweswaraiah, R.  Syed, S.  Soudry, K.  Ratnam, H. V.  Gudiseva, P.  Lee, T.  Gaasterland, R.  Ayyagari, “Identification of a novel mutation in the CDHR1 Gene in a family with recessive retinal degeneration,” Arch. Ophthalmol. 130, 1301–1308 (2012). [CrossRef]
  8. C.  Correia, J. P.  Veran, G.  Herriot, “Advanced vibration suppression algorithms in adaptive optics systems,” J. Opt. Soc. Am. A 29, 185–194 (2012). [CrossRef]
  9. R.  Legras, Y.  Benard, N.  Lopez-Gil, “Effect of coma and spherical aberration on depth-of-focus measured using adaptive optics and computationally blurred images,” J. Cataract. Refract. Surg. 38, 458–469 (2012). [CrossRef]
  10. H. J.  Hofer, J.  Blaschke, J.  Patolia, D. E.  Koenig, “Fixation light hue bias revisited: implications for using adaptive optics to study color vision,” Vis. Res. 56, 49–56 (2012). [CrossRef]
  11. H. W.  Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953). [CrossRef]
  12. J.  Liang, D. R.  Williams, D. T.  Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997). [CrossRef]
  13. A.  Dubra, Y.  Sulai, J. L.  Norris, R. F.  Cooper, A. M.  Dubis, D. R.  Williams, J.  Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2, 1864–1876 (2011). [CrossRef]
  14. N.  Doble, S. S.  Choi, J. L.  Codona, J.  Christou, J. M.  Enoch, D. R.  Williams, “In vivo imaging of the human rod photoreceptor mosaic,” Opt. Lett. 36, 31–33 (2011). [CrossRef]
  15. A.  Roorda, F.  Romero-Borja, W.  Donnelly, H.  Queener, T.  Hebert, M.  Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002). [CrossRef]
  16. D.  Miller, L.  Thibos, X.  Hong, “Requirements for segmented correctors for diffraction-limited performance in the human eye,” Opt. Express 13, 275–289 (2005). [CrossRef]
  17. N.  Doble, D. T.  Miller, G.  Yoon, D. R.  Williams, “Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes,” Appl. Opt. 46, 4501–4514 (2007). [CrossRef]
  18. G. D.  Love, J. V.  Major, A.  Purvis, “Liquid-crystal prisms for tip-tilt adaptive optics,” Opt. Lett. 19, 1170–1172 (1994). [CrossRef]
  19. G. D.  Love, N.  Andrews, P.  Birch, D.  Buscher, P.  Doel, C.  Dunlop, J.  Major, R.  Myers, A.  Purvis, R.  Sharples, A.  Vick, A.  Zadrozny, S. R.  Restaino, A.  Glindemann, “Binary adaptive optics: atmospheric wave-front correction with a half-wave phase shifter,” Appl. Opt. 34, 6058–6066 (1995). [CrossRef]
  20. Y.  Zhang, S.  Poonja, A.  Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31, 1268–1270 (2006). [CrossRef]
  21. L. N.  Thibos, A.  Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74, 581–587 (1997). [CrossRef]
  22. Q.  Mu, Z.  Cao, D.  Li, L.  Hu, L.  Xuan, “Liquid Crystal based adaptive optics system to compensate both low and high order aberrations in a model eye,” Opt. Express 15, 1946–1953 (2007). [CrossRef]
  23. C.  Li, M.  Xia, Q.  Mu, B.  Jiang, L.  Xuan, Z.  Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Express 17, 10774–10781 (2009). [CrossRef]
  24. P.  Prieto, E.  Fernandez, S.  Manzanera, P.  Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004). [CrossRef]
  25. Q.  Mu, Z.  Cao, L.  Hu, D.  Li, L.  Xuan, “An adaptive optics imaging system based on a high-resolution liquid crystal on silicon device,” Opt. Express 14, 8013–8018 (2006). [CrossRef]
  26. C.  Li, M.  Xia, D.  Li, Q.  Mu, L.  Xuan, “High-resolution retinal imaging through open-loop adaptive optics,” J. Biomed. Opt. 15, 046009 (2010). [CrossRef]
  27. K.  Venkateswaran, A.  Roorda, F.  Romero-Borja, “Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 9, 132–138 (2004). [CrossRef]
  28. B.  Hermann, E. J.  Fernandez, A.  Unterhuber, H.  Sattmann, A. F.  Fercher, W.  Drexler, P. M.  Prieto, P.  Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004). [CrossRef]
  29. Y.  Zhang, J.  Rha, R.  Jonnal, D.  Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13, 4792–4811 (2005). [CrossRef]
  30. E. J.  Fernandez, B.  Povazay, B.  Hermann, A.  Unterhuber, H.  Sattmann, P. M.  Prieto, R.  Leitgeb, P.  Ahnelt, P.  Artal, W.  Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vis. Res. 45, 3432–3444 (2005). [CrossRef]
  31. R. J.  Zawadzki, S. M.  Jones, S. S.  Olivier, M.  Zhao, B. A.  Bower, J. A.  Izatt, S.  Choi, S.  Laut, J. S.  Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005). [CrossRef]
  32. D. A.  Atchison, G.  Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22, 29–37 (2005). [CrossRef]
  33. K.  Grieve, P.  Tiruveedhula, Y.  Zhang, A.  Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser ophthalmoscope,” Opt. Express 14, 12230–12242 (2006). [CrossRef]
  34. B.  Wang, K. J.  Ciuffreda, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51, 75–85 (2006). [CrossRef]
  35. J.  Porter, J. E.  Lin, K.  Thorn, A.  Awwal, Adaptive Optics for Vision Science (Wiley, 2006), pp. 156–157.
  36. J. I.  Yellott, “Spectral analysis of spatial sampling by photoreceptors: topological disorder prevents aliasing,” Vis. Res. 22, 1205–1210 (1982). [CrossRef]
  37. N.  Kong, C.  Li, M.  Xia, D.  Li, Y.  Qi, L.  Xuan, “Optimization of the open-loop liquid crystal adaptive optics retinal imaging system,” J. Biomed. Opt. 17, 026001 (2012). [CrossRef]
  38. H.  Song, Y.  Zhao, X.  Qi, Y. T.  Chui, S. A.  Burns, “Stokes vector analysis of adaptive optics images of the retina,” Opt. Lett. 33, 137–139 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1324 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited