OSA's Digital Library

Photonics Research

Photonics Research

| A joint OSA/Chinese Laser Press publication

  • Editor: Zhiping (James) Zhou
  • Vol. 1, Iss. 3 — Oct. 1, 2013
  • pp: 136–139

Three-dimensional nanoconfinement of broadband optical energy in all-dielectric photonic nanostructure

Han Lin, Qiming Zhang, and Min Gu  »View Author Affiliations

Photonics Research, Vol. 1, Issue 3, pp. 136-139 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (534 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the confinement of broadband optical energy in the visible to near-infrared regime in a three-dimensional nanoscale volume with high energy efficiency in a nanostructure consisting of multiple nanoslits in dielectric chacolgenide material. We find that a broadband optical field can be confined down to the scale of 1 nm ( λ / 650 ) with a confinement volume of λ 3 / 3 × 10 4 . The figure of merit of the nanostructure can be up to 10 times that achieved by plasmonic lensing and nanofocusing. Our work opens a new way for truly nanoscaled photonics applicable to nanolithograpy, nanoimaging, lab-on-chip nanosensing, single-molecule detection, and nanospectroscopy.

© 2013 Chinese Laser Press

OCIS Codes
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: June 14, 2013
Revised Manuscript: August 28, 2013
Manuscript Accepted: August 28, 2013
Published: September 30, 2013

Han Lin, Qiming Zhang, and Min Gu, "Three-dimensional nanoconfinement of broadband optical energy in all-dielectric photonic nanostructure," Photon. Res. 1, 136-139 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Gu, Advanced Optical Imaging Theory (Springer-Verlag, 2000), Chap. 6.
  2. K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nat. Photonics 2, 311–314 (2008). [CrossRef]
  3. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994). [CrossRef]
  4. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005). [CrossRef]
  5. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3, 733–737 (2008). [CrossRef]
  6. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9, 4320–4325 (2009). [CrossRef]
  7. H. Shi and L. J. Guo, “Design of plasmonic near field plate at optical frequency,” Appl. Phys. Lett. 96, 141107 (2010). [CrossRef]
  8. L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011). [CrossRef]
  9. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010). [CrossRef]
  10. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89, 041111 (2006). [CrossRef]
  11. H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express, 17, 7519–7524 (2009). [CrossRef]
  12. H. Choo, M. Stafarroni, T. J. Seok, J. Bokor, M. Wu, P. J. Schuck, S. Cabrini, and E. Yablonovitch, “Three-dimensional optical transformer—highly efficient nanofocusing device,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (IEEE, 2010).
  13. M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5, 283–287 (2011). [CrossRef]
  14. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006). [CrossRef]
  15. S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10, 2511–2518 (2010). [CrossRef]
  16. T. Ohta, “Phase-change optical memory promotes the DVD optical disk,” J. Optoelectron. Adv. Mater. 3, 609–626 (2001).
  17. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003). [CrossRef]
  18. Q. Zhang, H. Lin, B. Jia, L. Xu, and M. Gu, “Nanogratings and nanoholes fabricated by direct femtosecond laser writing in chalcogenide glasses,” Opt. Express 18, 6885–6890 (2010). [CrossRef]
  19. www.lumerical.com .
  20. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004). [CrossRef]
  21. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95, 143901 (2005). [CrossRef]
  22. www.comsol.com .
  23. E. D. Mentovich, B. Belgorodsky, I. Kalifa, H. Cohen, and S. Richter, “Large-scale fabrication of 4-nm-channel vertical protein-based ambipolar transistors,” Nano Lett. 9, 1296–1300 (2009). [CrossRef]
  24. Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013). [CrossRef]
  25. E. J. Sánchez, L. Novotny, and X. Sunney Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited