OSA's Digital Library

Photonics Research

Photonics Research

| A joint OSA/Chinese Laser Press publication

  • Editor: Zhiping (James) Zhou
  • Vol. 1, Iss. 4 — Dec. 1, 2013
  • pp: 171–185

Engineered quasi-phase-matching for laser techniques [Invited]

X. P. Hu, P. Xu, and S. N. Zhu  »View Author Affiliations


Photonics Research, Vol. 1, Issue 4, pp. 171-185 (2013)
http://dx.doi.org/10.1364/PRJ.1.000171


View Full Text Article

Enhanced HTML    Acrobat PDF (1333 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The quasi-phase-matching (QPM) technique has drawn increasing attention due to its promising applications in areas such as nonlinear frequency conversion for generating new laser light sources. In this paper, we will briefly review the main achievements in this field. We give a brief introduction of the invention of QPM theory, followed by the QPM-material fabrication techniques. When combing QPM with the solid-state laser techniques, various laser light sources, such as single-wavelength visible lasers and ultraviolet lasers, red–green–blue three-fundamental-color lasers, optical parametric oscillators in different temporal scales, and passive mode-locking lasers based on cascaded second-order nonlinearity, have been presented. The QPM technique has been extended to quantum optics recently, and prospects for the studies are bright.

© 2013 Chinese Laser Press

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7300) Lasers and laser optics : Visible lasers
(160.4330) Materials : Nonlinear optical materials
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4160) Nonlinear optics : Multiharmonic generation
(140.3613) Lasers and laser optics : Lasers, upconversion

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 18, 2013
Revised Manuscript: July 20, 2013
Manuscript Accepted: August 8, 2013
Published: November 8, 2013

Citation
X. P. Hu, P. Xu, and S. N. Zhu, "Engineered quasi-phase-matching for laser techniques [Invited]," Photon. Res. 1, 171-185 (2013)
http://www.opticsinfobase.org/prj/abstract.cfm?URI=prj-1-4-171


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960). [CrossRef]
  2. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961). [CrossRef]
  3. D. A. Kleinman, “Theory of second harmonic generation of light,” Phys. Rev. 128, 1761–1775 (1962). [CrossRef]
  4. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  5. M. S. Piltch, C. D. Cantrell, and R. C. Sze, “Infrared second-harmonic generation in nonbirefringent cadmium telluride,” J. Appl. Phys. 47, 3514–3517 (1976). [CrossRef]
  6. A. Szilagyi, A. Hordvik, and H. Schlossberg, “A quasi-phase-matching technique for efficient optical mixing and frequency doubling,” J. Appl. Phys. 47, 2025–2032 (1976). [CrossRef]
  7. D. E. Thompson, J. D. McMullen, and D. B. Anderson, “Second-harmonic generation in GaAs ‘‘stack of plates’’ using high-power CO2 laser radiation,” Appl. Phys. Lett. 29, 113–115 (1976). [CrossRef]
  8. M. Okada, K. Takizawa, and S. Ieiri, “Second harmonic generation by periodic laminar structure of nonlinear optical crystal,” Opt. Commun. 18, 331–334 (1976). [CrossRef]
  9. N. B. Ming, J. F. Hong, and D. Feng, “The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals,” J. Mater. Sci. 17, 1663–1670 (1982). [CrossRef]
  10. Y. L. Lu, Y. Q. Lu, X. F. Chen, G. P. Luo, C. C. Xue, and N. B. Ming, “Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice,” Appl. Phys. Lett. 68, 2642–2644 (1996). [CrossRef]
  11. D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, and Y. N. Wang, “Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,” Appl. Phys. Lett. 37, 607–609 (1980). [CrossRef]
  12. W. S. Wang, Q. Zou, Z. H. Geng, and D. Feng, “Study of LiTaO3 crystals grown with a modulated structure I. Second harmonic generation in LiTaO3 crystals with periodic laminar ferroelectric domains,” J. Cryst. Growth 79, 706–709 (1986). [CrossRef]
  13. M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984). [CrossRef]
  14. Y. S. Luh, R. S. Feigelson, M. M. Fejer, and R. Byer, “Ferroelectric domain structures in LiNbO3 single-crystal fibers,” J. Cryst. Growth 78, 135–143 (1986). [CrossRef]
  15. G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56, 108–110 (1990). [CrossRef]
  16. D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, “Periodically poled LiNbO3 for high-efficiency second-harmonic generation,” Appl. Phys. Lett. 59, 2657–2659 (1991). [CrossRef]
  17. E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically-poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989). [CrossRef]
  18. E. J. Lim, M. M. Fejer, R. L. Byer, and W. J. Kozlovsky, “Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,” Electron. Lett. 25, 731–732 (1989). [CrossRef]
  19. J. Webjörn, F. Laurell, and G. Arvidsson, “Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide,” IEEE Photon. Technol. Lett. 1, 316–318 (1989). [CrossRef]
  20. S. Miyazawa, “Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide,” J. Appl. Phys. 50, 4599–4603 (1979). [CrossRef]
  21. J. D. Bierlein, D. B. Laubacher, J. B. Brown, and C. J. van der Poel, “Balanced phase matching in segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 56, 1725–1727 (1990). [CrossRef]
  22. C. J. van der Poel, J. D. Bierlein, J. B. Brown Co., and S. Colak, “Efficient type I blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990). [CrossRef]
  23. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993). [CrossRef]
  24. H. Ito, C. Takyu, and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett. 27, 1221–1222 (1991). [CrossRef]
  25. G. D. Miller, “Periodically poled lithium niobate: modeling, fabrication, and nonlinear-optical performance,” Ph.D. thesis (Stanford University, 1998).
  26. S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995). [CrossRef]
  27. W. P. Risk and S. D. Lau, “Periodic electric field poling of KTiOPO4 using chemical patterning,” Appl. Phys. Lett. 69, 3999–4001 (1996). [CrossRef]
  28. Y. Y. Zhu, J. S. Fu, R. F. Xiao, and G. K. L. Wong, “Second harmonic generation in periodically domain-inverted Sr0.6Ba0.4Nb2O6 crystal plate,” Appl. Phys. Lett. 70, 1793–1795 (1997). [CrossRef]
  29. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995). [CrossRef]
  30. L. E. Myers, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled lithium niobate,” Ph.D. thesis (Stanford University, 1995).
  31. G. D. Miller, R. G. Batchko, M. M. Fejer, and R. L. Byer, “Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,” Proc. SPIE 2700, 34–35 (1996). [CrossRef]
  32. R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Boyd, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75, 1673–1675 (1999). [CrossRef]
  33. A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett. 81, 4946–4948 (2002). [CrossRef]
  34. A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, “First-order quasi-phase-matched blue light generation in surface-poled Ti:indiffused lithium niobate waveguides,” Appl. Phys. Lett. 84, 4430–4432 (2004). [CrossRef]
  35. G. Zhong, J. Jian, and Z. Wu, “Measurement of optically induced refractive-index change of lithium niobate doped with different concentration of MgO,” in Proceedings of the 11th International Quantum Electronics Conference (1980), pp. 631–635.
  36. A. Kuroda, S. Kurimura, and Y. Uesu, “Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields,” Appl. Phys. Lett. 69, 1565–1567 (1996). [CrossRef]
  37. S. Sonoda, I. Tsuruma, and M. Hatori, “Second harmonic generation in electric poled X-cut MgO-doped LiNbO3 waveguides,” Appl. Phys. Lett. 70, 3078–3080 (1997). [CrossRef]
  38. T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40, 1751–1753 (2001). [CrossRef]
  39. H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett. 82, 4062–4064 (2003). [CrossRef]
  40. H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic poling in 3-mm-thick MgO:LiNbO3 crystals,” Jpn. J. Appl. Phys. 42, L108–L110 (2003). [CrossRef]
  41. H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5  mm × 5  mm aperture,” Opt. Lett. 30, 2918–2920 (2005). [CrossRef]
  42. H. Ishizuki and T. Taira, “High energy quasi-phase matched optical parametric oscillation using Mg-doped congruent LiTaO3 crystal,” Opt. Express 18, 253–258 (2010). [CrossRef]
  43. H. Ishizuki and T. Taira, “Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3,” Opt. Express 20, 20002–20010 (2012). [CrossRef]
  44. K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-μm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42, L90–L91 (2003). [CrossRef]
  45. C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photon. Rev. 6, 526–548 (2012). [CrossRef]
  46. Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994). [CrossRef]
  47. H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71, 3474–3476 (1997). [CrossRef]
  48. G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 3650–3652 (1998). [CrossRef]
  49. C. Canalias, V. Pasiskevicius, and F. Laurell, “Periodic poling of KTiOPO4: from micrometer to sub-micrometer domain gratings,” Ferroelectrics 340, 27–47 (2006). [CrossRef]
  50. C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82, 4233–4235 (2003). [CrossRef]
  51. C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 86, 181105 (2005). [CrossRef]
  52. C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1, 459–462 (2007). [CrossRef]
  53. L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001). [CrossRef]
  54. S. Kurimura, M. Harada, K. Muramatsu, M. Ueda, M. Adachi, T. Yamada, and T. Ueno, “Quartz revisits nonlinear optics: twinned crystal for quasi-phase matching,” Opt. Mater. Express 1, 1367–1375 (2011). [CrossRef]
  55. J. L. He, G. Z. Luo, H. T. Wang, S. N. Zhu, Y. Y. Zhu, Y. B. Chen, and N. B. Ming, “Generation of 840  mW of red light by frequency doubling a diode-pumped 1342  nm Nd:YVO4 laser with periodically-poled LiTaO3,” Appl. Phys. B 74, 537–539 (2002). [CrossRef]
  56. X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85, 188–190 (2004). [CrossRef]
  57. X. P. Hu, X. Wang, Z. Yan, H. X. Li, J. L. He, and S. N. Zhu, “Generation of red light at 660  nm by frequency doubling a Nd:YAG laser with periodically-poled stoichiometric LiTaO3,” Appl. Phys. B 86, 265–268 (2007). [CrossRef]
  58. R. Thompson, M. Tu, D. Aveline, N. Lundblad, and L. Maleki, “High power single frequency 780  nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals,” Opt. Express 11, 1709–1713 (2003). [CrossRef]
  59. S. Chiow, T. Kovachy, J. M. Hogan, and M. A. Kasevich, “Generation of 43  W of quasi-continuous 780  nm laser light via high-efficiency, single-pass frequency doubling in periodically poled lithium niobate crystals,” Opt. Lett. 37, 3861–3863 (2012). [CrossRef]
  60. D. L. Hart, L. Goldberg, and W. K. Burns, “Red light generation by sum frequency mixing of Er/Yb fibre amplifier output in QPM LiNbO3,” Electron. Lett. 35, 52–53 (1999). [CrossRef]
  61. J. Boullet, L. Lavoute, A. Desfarges Berthelemot, V. Kermène, P. Roy, V. Couderc, B. Dussardier, and A.-M. Jurdyc, “Tunable red-light source by frequency mixing from dual band Er/Yb co-doped fiber laser,” Opt. Express 14, 3936–3941 (2006). [CrossRef]
  62. P. A. Champert, S. V. Popov, M. A. Solodyankin, and J. R. Taylor, “1.4-W red generation by frequency mixing of seeded Yb and Er fiber amplifiers,” IEEE Photon. Technol. Lett. 14, 1680–1682 (2002). [CrossRef]
  63. J. Melkonian, T. My, F. Bretenaker, and C. Drag, “High spectral purity and tunable operation of a continuous singly resonant optical parametric oscillator emitting in the red,” Opt. Lett. 32, 518–520 (2007). [CrossRef]
  64. W. R. Bosenberg, J. I. Alexander, L. E. Myers, and R. W. Wallace, “2.5-W, continuous-wave, 629-nm solid-state laser source,” Opt. Lett. 23, 207–209 (1998). [CrossRef]
  65. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997). [CrossRef]
  66. N. Pavel, I. Shoji, T. Taira, K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Room-temperature, continuous-wave 1-W green power by single-pass frequency doubling in a bulk periodically poled MgO:LiNbO3 crystal,” Opt. Lett. 29, 830–832 (2004). [CrossRef]
  67. S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalite,” Appl. Phys. Lett. 90, 051115 (2007). [CrossRef]
  68. S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT,” Opt. Express 17, 13711–13726 (2009). [CrossRef]
  69. I. Ricciardi, M. Rosa, A. Rocco, P. Ferraro, and P. Natale, “Cavity-enhanced generation of 6  W cw second-harmonic power at 532  nm in periodically-poled MgO:LiTaO3,” Opt. Express 18, 10985–10994 (2010). [CrossRef]
  70. S. C. Kumar, G. K. Samanta, K. Devi, and M. Ebrahim-Zadeh, “High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation,” Opt. Express 19, 11152–11169 (2011). [CrossRef]
  71. G. C. Bhar, U. Chatterjee, and P. Datta, “Enhancement of second harmonic generation by double-pass configuration in barium borate,” Appl. Phys. B 51, 317–319 (1990). [CrossRef]
  72. V. Pruneri, R. Koch, P. G. Kazansky, W. A. Clarkson, P. St, J. Russell, and D. C. Hanna, “49  mW of cw blue light generated by first-order quasi-phasematched frequency doubling of a diode-pumped 946-nm Nd:YAG laser,” Opt. Lett. 20, 2375–2377 (1995). [CrossRef]
  73. R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Erman, “Continuous-wave quasi-phase-matched generation of 60  mW at 465  nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,” Opt. Lett. 24, 1293–1295 (1999). [CrossRef]
  74. X. P. Hu, G. Zhao, C. Zhang, Z. D. Xie, J. L. He, and S. N. Zhu, “High-power, blue-light generation in a dual-structure, periodically poled, stoichiometric LiTaO3 crystal,” Appl. Phys. B 87, 91–94 (2007). [CrossRef]
  75. D. Woll, J. Schumacher, A. Robertson, M. A. Tremont, R. Wallenstein, M. Katz, D. Eger, and A. Englander, “250  mW of coherent blue 460-nm light generated by single-pass frequency doubling of the output of a mode-locked high-power diode laser in periodically poled KTP,” Opt. Lett. 27, 1055–1057 (2002). [CrossRef]
  76. P. Xu, K. Li, G. Zhao, S. N. Zhu, Y. Du, S. H. Ji, Y. Y. Zhu, N. B. Ming, L. Luo, K. F. Li, and K. W. Cheah, “Quasi-phase-matched generation of tunable blue light in a quasi-periodic structure,” Opt. Lett. 29, 95–97 (2004). [CrossRef]
  77. G. K. Samanta and M. Ebrahim-Zadeh, “Continuous-wave, single-frequency, solid-state blue source for the 425–489  nm spectral range,” Opt. Lett. 33, 1228–1230 (2008). [CrossRef]
  78. C.-M. Lai, I.-N. Hu, Y.-Y. Lai, Z.-X. Huang, L.-H. Peng, A. Boudrioua, and A.-H. Kung, “Upconversion blue laser by intracavity frequency self-doubling of periodically poled lithium tantalate parametric oscillator,” Opt. Lett. 35, 160–162 (2010). [CrossRef]
  79. J. Zimmermann, J. Struckmeier, M. R. Hofmann, and J. Meyn, “Tunable blue laser based on intracavity frequency doubling with a fan-structured periodically poled LiTaO3 crystal,” Opt. Lett. 27, 604–606 (2002). [CrossRef]
  80. J. D. Vance, C. Y. She, and H. Moosmüller, “Continuous-wave, all-solid-state, single-frequency 400-mW source at 589  nm based on doubly resonant sum-frequency mixing in a monolithic lithium niobate resonator,” Appl. Opt. 37, 4891–4896 (1998). [CrossRef]
  81. J. Yue, C.-Y. She, B. P. Williams, J. D. Vance, P. E. Acott, and T. D. Kawahara, “Continuous-wave sodium D2 resonance radiation generated in single-pass sum-frequency generation with periodically poled lithium niobate,” Opt. Lett. 34, 1093–1095 (2009). [CrossRef]
  82. A. J. Tracy, C. Lopez, A. Hankla, D. J. Bamford, D. J. Cook, and S. J. Sharpe, “Generation of high-average-power visible light in periodically poled nearly stoichiometric lithium tantalite,” Appl. Opt. 48, 964–968 (2009). [CrossRef]
  83. E. Mimoun, L. Sarlo, J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589  nm light with near-unit efficiency,” Opt. Express 16, 18684–18691 (2008). [CrossRef]
  84. L. N. Zhao, J. Su, X. P. Hu, X. J. Lv, Z. D. Xie, G. Zhao, P. Xu, and S. N. Zhu, “Single-pass sum-frequency-generation of 589-nm yellow light based on dual-wavelength Nd:YAG laser with periodically-poled LiTaO3 crystal,” Opt. Express 18, 13331–13336 (2010). [CrossRef]
  85. Y. F. Chen, S. W. Tsai, S. C. Wang, Y. C. Huang, T. C. Lin, and B. C. Wong, “Efficient generation of continuous-wave yellow light by single-pass sum-frequency mixing of a diode-pumped Nd:YVO4 dual-wavelength laser with periodically poled lithium niobate,” Opt. Lett. 27, 1809–1811 (2002). [CrossRef]
  86. Y. F. Chen, “Cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B. 70, 475–478 (2000). [CrossRef]
  87. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589  nm,” Opt. Express 13, 6772–6776 (2005). [CrossRef]
  88. Y. Yuan, L. Zhang, Y. H. Liu, X. J. Lu, G. Zhao, Y. Feng, and S. N. Zhu, “Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal,” Sci. China Ser. B 56, 125–128 (2013). [CrossRef]
  89. R. T. White, I. T. McKinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Tunable single-frequency ultraviolet generation from a continuous-wave Ti:sapphire laser with an intracavity PPLN frequency doubler,” Appl. Phys. B 77, 547–550 (2003). [CrossRef]
  90. K. Mizuuchi, T. Sugita, and K. Yamamoto, “Generation of 360-nm ultraviolet light in first-order periodically poled bulk MgO:LiNbO3,” Opt. Lett. 28, 935–937 (2003). [CrossRef]
  91. J.-P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalite,” Opt. Lett. 22, 1214–1216 (1997). [CrossRef]
  92. K. Mizuuchi and K. Yamamoto, “Generation of 340-nm light by frequency doubling of a laser diode in bulk periodically poled LiTaO3,” Opt. Lett. 21, 107–109 (1996). [CrossRef]
  93. P. A. Champert, S. V. Popov, J. R. Taylor, and J. P. Meyn, “Efficient second-harmonic generation at 384  nm in periodically poled lithium tantalate by use of a visible Yb-Er-seeded fiber source,” Opt. Lett. 25, 1252–1254 (2000). [CrossRef]
  94. Z. W. Liu, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, J. L. He, C. Zhang, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “Quasi-Cw ultraviolet generation in a dual-periodic LiTaO3 superlattice by frequency tripling,” Jpn. J. Appl. Phys. 40, 6841–6844 (2001). [CrossRef]
  95. S. Wang, V. Pasiskevicius, J. Hellstrã, F. Laurell, and H. Karlsson, “First-order type II quasi-phase-matched UV generation in periodically poled KTP,” Opt. Lett. 24, 978–980 (1999). [CrossRef]
  96. S. Wang, V. Pasiskevicius, F. Laurell, and H. Karlsson, “Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4,” Opt. Lett. 23, 1883–1885 (1998). [CrossRef]
  97. B. Zhang, Y. J. Ding, and I. B. Zotova, “Efficient ultrafast ultraviolet generation based on frequency doubling in short-period periodically-poled KTiOPO4 crystal,” Appl. Phys. B 99, 629–632 (2010). [CrossRef]
  98. E. G. Víllora, K. Shimamura, K. Sumiya, and H. Ishibashi, “Birefringent and quasi phase-matching with BaMgF4for vacuum-UV/UV and mid-IR all solid-state lasers,” Opt. Express 17, 12362–12378 (2009). [CrossRef]
  99. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53, 1951–1953 (1984). [CrossRef]
  100. J. Feng, Y. Y. Zhu, and N. B. Ming, “Harmonic generation in an optical Fibonacci superlattice,” Phys. Rev. B 41, 5578–5582 (1990). [CrossRef]
  101. B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattice,” Appl. Phys. Lett. 75, 2175–2177 (1999). [CrossRef]
  102. H. Liu, S. N. Zhu, Y. Y. Zhu, N. B. Ming, X. C. Lin, W. J. Ling, A. Y. Yao, and Z. Y. Xu, “Multiple-wavelength second-harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 81, 3326–3328 (2002). [CrossRef]
  103. M. H. Chou, K. R. Parameswaran, and M. M. Fejer, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structure in LiNbO3 waveguides,” Opt. Lett. 24, 1157–1159 (1999). [CrossRef]
  104. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998). [CrossRef]
  105. B. Q. Ma, T. Wang, Y. Sheng, P. G. Ni, Y. Q. Wang, B. Y. Cheng, and D. Z. Zhang, “Quasiphase matched harmonic generation in a two-dimensional octagonal photonics superlattice,” Appl. Phys. Lett. 87, 251103 (2005). [CrossRef]
  106. L. H. Peng, C. C. Hsu, and Y. C. Shih, “Second-harmonic green generation from two-dimensional х(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83, 3447–3449 (2003). [CrossRef]
  107. R. K. P. Zia and W. J. Dallas, “A simple derivation of quasi-crystalline spectra,” J. Phys. A 18, L341–L345 (1985). [CrossRef]
  108. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997). [CrossRef]
  109. K. Yamamoto, H. Yamamoto, and T. Taniuchi, “Simultaneous sum-frequency and second-harmonic generation from a proton-exchanged MgO-doped LiNbO3 waveguide,” Appl. Phys. Lett. 58, 1227–1229 (1991). [CrossRef]
  110. F. Laurell, J. B. Brown, and J. D. Bierlein, “Simultaneous generation of UV and visible light in segmented KTP waveguides,” Appl. Phys. Lett. 62, 1872–1874 (1993). [CrossRef]
  111. M. L. Sundheimer, A. Villeneuve, G. I. Stegeman, and J. D. Bierlein, “Simultaneous generation of red, green and blue light in a segmented KTP waveguide using a single source,” Electron. Lett. 30, 975–976 (1994). [CrossRef]
  112. P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995). [CrossRef]
  113. E. Cantelar, G. A. Torchia, J. A. Sanz-García, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83, 2991–2993 (2003). [CrossRef]
  114. D. Jaque, J. Capmany, and J. G. Sole, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3  μm,” Appl. Phys. Lett. 75, 325–327 (1999). [CrossRef]
  115. J. J. Romero, D. Jaque, J. F. Sole, and A. A. Kaminskii, “Simultaneous generation of coherent light in the three fundamental colors by quasicylindrical ferroelectric domains in Sr0.6Ba0.4(NbO3)2,” Appl. Phys. Lett. 81, 4106–4108 (2002). [CrossRef]
  116. J. Capmany, “Simultaneous generation of red, green, and blue continuous-wave laser radiation in Nd3+-doped aperiodically poled lithium niobate,” Appl. Phys. Lett. 78, 144–146 (2001). [CrossRef]
  117. J. L. He, J. Liao, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228–230 (2003). [CrossRef]
  118. J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3,” Appl. Phys. Lett. 82, 3159–3161 (2003). [CrossRef]
  119. H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96, 7756–7758 (2004). [CrossRef]
  120. X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, “High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice,” Opt. Lett. 33, 408–410 (2008). [CrossRef]
  121. X. W. Fan, J. L. He, H. T. Huang, and L. Xue, “An intermittent oscillation dual-wavelength diode-pumped Nd:YAG laser,” IEEE J. Quantum Electron. 43, 884–888 (2007). [CrossRef]
  122. B. Henrich, T. Herrmann, J. Kleilbauer, R. Knappe, A. Nebel, and R. Wallenstein, “Concepts and technologies of advanced RGB sources,” in Advanced Solid-State Lasers Conference (2002), pp. 179–181.
  123. Z. W. Liu, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “A scheme to realize three-fundamental-colors laser based on quasi-phase matching,” Solid State Commun. 119, 363–366 (2001). [CrossRef]
  124. Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite,” Appl. Phys. Lett. 89, 181101 (2006). [CrossRef]
  125. P. Xu, L. N. Zhao, X. J. Lv, J. Lu, Y. Yuan, G. Zhao, and S. N. Zhu, “Compact high-power red-green-blue laser light source generation from a single lithium tantalate with cascaded domain modulation,” Opt. Express 17, 9509–9514 (2009). [CrossRef]
  126. S. T. Lin, Y. Y. Lin, R. Y. Tu, T. D. Wang, and Y. C. Huang, “Fiber-laser-pumped CW OPO for red, green, blue laser generation,” Opt. Express 18, 2361–2367 (2010). [CrossRef]
  127. R. S. Cudney, M. Robles-Agudo, and L. A. Rois, “RGB source based on simultaneous quasi-phasematched second and third harmonic generation in periodically poled lithium niobate,” Opt. Express 14, 10663–10668 (2006). [CrossRef]
  128. P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu, “Frequency self-doubling optical parametric amplification: noncollinear red–green–blue light-source generation based on a hexagonally poled lithium tantalite,” Opt. Lett. 33, 2791–2793 (2008). [CrossRef]
  129. L. N. Zhao, Z. Qi, Y. Yuan, J. Lu, Y. H. Liu, C. D. Chen, X. J. Lv, Z. D. Xie, X. P. Hu, G. Zhao, P. Xu, and S. N. Zhu, “Integrated noncollinear red–green–blue laser light source using a two-dimensional nonlinear photonic quasicrystal,” J. Opt. Soc. Am. B 28, 608–612 (2011). [CrossRef]
  130. L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett. 20, 52–54 (1995). [CrossRef]
  131. M. L. Bortz, M. A. Arbore, and M. M. Fejer, “Quasi-phase-matched optical parametric amplification and oscillation in periodically poled LiNbO3 waveguides,” Opt. Lett. 20, 49–51 (1995). [CrossRef]
  132. A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5  mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express 1, 201–206 (2011). [CrossRef]
  133. V. Pruneri, S. D. Butterworth, and D. C. Hanna, “Low-threshold picosecond optical parametric oscillation in quasi-phase-matched lithium niobate,” Appl. Phys. Lett. 69, 1029–1031 (1996). [CrossRef]
  134. A. Galvanauskas, M. A. Arbore, M. M. Fejer, M. E. Fermann, and D. Harter, “Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3,” Opt. Lett. 22, 105–107 (1997). [CrossRef]
  135. S. D. Butterworth, P. G. R. Smith, and D. C. Hanna, “Picosecond Ti:sapphire-pumped optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 22, 618–620 (1997). [CrossRef]
  136. S. Chaitanya Kumar and M. Ebrahim-Zadeh, “High-power, fiber-laser-pumped, picosecond optical parametric oscillator based on MgO:sPPLT,” Opt. Express 19, 26660–26665 (2011). [CrossRef]
  137. C. W. Hoyt, M. Sheik-Bahae, and M. Ebrahim-Zadeh, “High-power picosecond optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 27, 1543–1545 (2002). [CrossRef]
  138. M. V. O’Connor, M. A. Watson, D. P. hepherd, D. C. Hanna, J. H. V. Price, A. Malinowski, J. Nilsson, N. G. R. Broderick, D. J. Richardson, and L. Lefort, “Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fiber laser,” Opt. Lett. 27, 1052–1054(2002). [CrossRef]
  139. T. Sudmeyer, J. Aus der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Femtosecond fiber-feedback optical parametric osicalltor,” Opt. Lett. 26, 304–306 (2001). [CrossRef]
  140. N. Coluccelli, H. Fonnum, M. Haakestad, A. Gambetta, D. Gatti, M. Marangoni, P. Laporta, and G. Galzerano, “25-MHz synchronously pumped optical parametric oscillator at 2.25-2.6 um and 4.1-4.9  μm,” Opt. Express 20, 22042–22047 (2012). [CrossRef]
  141. L. E. Myers, W. R. Bosenberg, J. I. Alexander, M. A. Arbore, M. M. Fejer, and R. L. Byer, “CW singly resonant optical parametric oscillators based on 1.064-um pumped periodically poled LiNbO3,” in Proceedings on Advanced Solid State Lasers, S. A. Payne and C. R. Pollock, eds. (1996), p. 35–37.
  142. S. C. Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5  W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B. 102, 31–35 (2011). [CrossRef]
  143. R. Sowade, I. Breunig, J. Kiessling, and K. Buse, “Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators,” Appl. Phys. B. 96, 25–28 (2009). [CrossRef]
  144. R. Das, S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “Broadband, high-power, continuous-wave, mid-infrared source using extended phase-matching bandwidth in MgO:PPLN,” Opt. Lett. 34, 3836–3838 (2009). [CrossRef]
  145. U. Strossner, J. P. Meyn, R. Wallenstein, P. Urenski, A. Arie, G. Roseman, J. Mlynek, S. Schiller, and A. Peters, “Single-frequency continuous-wave optical parametric oscillator system with an ultrawide tuning range of 550 to 2830  nm,” J. Opt. Soc. Am. B 19, 1419–1424 (2002). [CrossRef]
  146. T. Petelski, R. S. Conroy, K. Bencheikh, J. Mlynek, and S. Schiller, “All-soild-state, tunable, single-frequency source of yellow light for high-resolution spectroscopy,” Opt. Lett. 26, 1013–1015 (2001). [CrossRef]
  147. J. R. Schwesyg, C. R. Phillips, K. Ioakeimidi, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Suppression of mid-infrared light absorption in undoped congruent lithium niobate crystals,” Opt. Lett. 35, 1070–1072 (2010). [CrossRef]
  148. K. A. Stankov and J. Jethwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66, 41–46 (1988). [CrossRef]
  149. G. Cerullo, S. De Silvestri, A. Monguzzi, D. Segaka, and V. Magni, “Self-starting mode-locking of a CW Nd:YAG laser using cascaded second-order nonlinearities,” Opt. Lett. 20, 746–748 (1995). [CrossRef]
  150. Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4 laser with periocailly-poled KTP,” Appl. Phys. B 72, 395–397 (2001). [CrossRef]
  151. S. J. Holmgren, V. Pasiskevicius, and F. Laurell, “Generation of 2.8  ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP,” Opt. Express 13, 5270–5278 (2005). [CrossRef]
  152. H. Iliev, I. Buchvarov, S. Kurimura, and V. Petrov, “High-power picosecond Nd:GdVO4 laser mode locked by SHG in periodically poled stoichiometric lithium tantalite,” Opt. Lett. 35, 1016–1018 (2010). [CrossRef]
  153. S. J. Holmgren, A. Fragemann, V. Pasiskevicius, and F. Laurell, “Active and passive hybrid mode-locking of a Nd:YVO4 laser with a single partially poled KTP crystal,” Opt. Express 14, 6675–6680 (2006). [CrossRef]
  154. H. Iliev, D. Chuchumishev, I. Buchvarov, and V. Petrov, “Passive mode-locking of a diode-pumped Nd:YVO4 laser by intracavity SHG in PPKTP,” Opt. Express 18, 5754–5762 (2010). [CrossRef]
  155. Y. H. Liu, Z. D. Xie, S. D. Pan, X. J. Lv, Y. Yuan, X. P. Hu, J. Lu, L. N. Zhao, C. D. Chen, G. Zhao, and S. N. Zhu, “Diode-pumped passively mode-locked Nd:YVO4 laser at 1342  nm with periodically poled LiTaO3,” Opt. Lett. 36, 698–700 (2011). [CrossRef]
  156. H. Iliev, I. Buchvarov, S. Kurimura, and V. Petrov, “1.34-μm Nd:YVO4 laser mode-locked by SHG-lens formation in periodically-poled stoichiometric lithium tantalite,” Opt. Express 19, 21754–21759 (2011). [CrossRef]
  157. V. Y. Shur, “Domain nanotechnology in ferroelectric single crystals: lithium niobate and lithium tantalate family,” Ferroelectrics 443, 71–82 (2013). [CrossRef]
  158. J. J. Li, Z. Y. Li, and D. Z. Zhang, “Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method,” Phys. Rev. E 75, 056606 (2007). [CrossRef]
  159. P. Xu and S. N. Zhu, “Quasi-phase-matching engineering of entangled photons,” AIP Adv. 2, 041401 (2012). [CrossRef]
  160. Y. B. Yu, Z. D. Xie, X. Q. Yu, H. X. Li, P. Xu, H. M. Yao, and S. N. Zhu, “Generation of three-mode continuous-variable entanglement by cascaded nonlinear interactions in a quasiperiodic superlattice,” Phys. Rev. A 74, 042332 (2006). [CrossRef]
  161. X. Q. Yu, P. Xu, Z. D. Xie, J. F. Wang, H. Y. Leng, J. S. Zhao, S. N. Zhu, and N. B. Ming, “Transforming spatial entanglement using a domain-engineering technique,” Phys. Rev. Lett. 101, 233601 (2008). [CrossRef]
  162. H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011). [CrossRef]
  163. P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, H. Jin, Y. X. Gong, X. Q. Yu, Z. D. Xie, S. Y. Mu, and S. N. Zhu, “Lensless imaging by entangled photons from quadratic nonlinear photonic crystals,” Phys. Rev. A 86, 013805 (2012). [CrossRef]
  164. H. Jin, P. Xu, J. S. Zhao, H. Y. Leng, M. L. Zhong, and S. N. Zhu, “Observation of quantum Talbot effect from a domain-engineered nonlinear photonic crystal,” Appl. Phys. Lett. 101, 211115 (2012). [CrossRef]
  165. Y. F. Bai, P. Xu, Z. D. Xie, Y. X. Gong, and S. N. Zhu, “Mode-locked biphoton generation by concurrent quasi-phase-matching,” Phys. Rev. A 85, 053807 (2012). [CrossRef]
  166. S. E. Harris, “Chirp and compress: toward single-cycle biphotons,” Phys. Rev. Lett. 98, 063602 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited