OSA's Digital Library

Photonics Research

Photonics Research

| A joint OSA/Chinese Laser Press publication

  • Editor: Zhiping (James) Zhou
  • Vol. 2, Iss. 1 — Feb. 1, 2014
  • pp: 24–30

Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires

Ricardo Tellez-Limon, Mickael Fevrier, Aniello Apuzzo, Rafael Salas-Montiel, and Sylvain Blaize  »View Author Affiliations

Photonics Research, Vol. 2, Issue 1, pp. 24-30 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1010 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The eigenmodes analysis of Bloch modes in a chain of metallic nanowires (MNWs) provides a significant physical understanding about the light propagation phenomena involved in such structures. However, most of these analyses have been done above the light line in the dispersion relation, where the Bloch modes can only be excited with radiative modes. By making use of the Fourier modal method, in this paper we rigorously calculate the eigenmode and mode excitation of a chain of MNWs via the fundamental transverse magnetic (TM) mode of a dielectric waveguide. Quadrupolar and dipolar transversal Bloch modes were obtained in an MNW chain embedded in a dielectric material. These modes can be coupled efficiently with the fundamental TM mode of the waveguide. Since the eigenmodes supported by the integrated plasmonic structure exhibit strong localized surface plasmon (LSP) resonances, they could serve as a nanodevice for sensing applications. Also, the analysis opens a direction for novel nanostructures, potentially helpful for the efficient excitation of LSPs and strong field enhancement.

© 2014 Chinese Laser Press

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(130.0130) Integrated optics : Integrated optics
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: October 18, 2013
Revised Manuscript: December 18, 2013
Manuscript Accepted: December 18, 2013
Published: January 30, 2014

Ricardo Tellez-Limon, Mickael Fevrier, Aniello Apuzzo, Rafael Salas-Montiel, and Sylvain Blaize, "Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires," Photon. Res. 2, 24-30 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  2. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmons resonance,” Adv. Mater. 16, 1685–1706 (2004). [CrossRef]
  3. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  4. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticles chains,” Phys. Rev. B 70, 125429 (2004). [CrossRef]
  5. E. Popov, N. Bonod, and S. Enoch, “Comparison of plasmon surface waves on shallow and deep metallic 1D and 2D gratings,” Opt. Express 15, 4224–4237 (2007). [CrossRef]
  6. T. Yang and K. B. Crozier, “Surface plasmon coupling in periodic metallic nanoparticle structures: a semi-analytical model,” Opt. Express 16, 13070–13079 (2008). [CrossRef]
  7. A. Hochman and Y. Leviatan, “Rigorous modal analysis of metallic nanowire chains,” Opt. Express 17, 13561–13575 (2009). [CrossRef]
  8. E. Simsek, “Full analytical model for obtaining surface plasmon resonance modes of metal nanoparticle structures embedded in layered media,” Opt. Express 18, 1722–1733 (2010). [CrossRef]
  9. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006). [CrossRef]
  10. A. F. Koenderink, R. de Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Phys. Rev. B 76, 201403 (2007). [CrossRef]
  11. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003). [CrossRef]
  12. K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticles chains,” Opt. Express 15, 17482–17493 (2007). [CrossRef]
  13. H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua, and H. Xu, “Multipolar plasmon resonances in individual Ag nanorice,” ACS Nano. 4, 2649–2654 (2010). [CrossRef]
  14. R. Quidant, C. Girard, J. C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B 69, 085407 (2004). [CrossRef]
  15. M. Fevrier, P. Gogol, A. Aassime, R. Megy, D. Bouville, J. M. Lourtioz, and B. Dagens, “Localized surface plasmon Bragg grating on SOI waveguide at telecom wavelengths,” Appl. Phys. A 109, 935–942 (2012). [CrossRef]
  16. F. Beranl Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano. 6, 10156–10167 (2012). [CrossRef]
  17. M. Fevrier, P. Gogol, A. Aassime, R. Megy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12, 1032–1037 (2012). [CrossRef]
  18. A. Apuzzo, M. Fevrier, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lerondel, B. Dagens, and S. Blaize, “Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide,” Nano Lett. 13, 1000–1006 (2013). [CrossRef]
  19. N. Chateau and J. P. Hugonin, “Algorithm for the rigorous coupled-wave analysis of grating diffraction,” J. Opt. Soc. Am. A 11, 1321–1331 (1994). [CrossRef]
  20. P. Lalanne and E. Silberstein, “Fourier-modal methods applied to waveguide computational problems,” Opt. Express 25, 1092–1094 (2000).
  21. C. B. Burckhardt, “Diffraction of a plane wave at a sinusoidally stratified dielectric grating,” J. Opt. Soc. Am. 56, 1502–1509 (1966). [CrossRef]
  22. M. G. Moharam, E. B. Grann, and D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  23. J. Merle Elson, “Propagation in planar waveguides and the effects of wall roughness,” Opt. Express 9, 461–475 (2001). [CrossRef]
  24. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996). [CrossRef]
  25. G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,” J. Opt. Soc. Am. A 16, 2510–2516 (1999). [CrossRef]
  26. E. Popov and M. Neviere, “Grating theory: new equations in Fourier space leading to fast converging results for TM polarization,” J. Opt. Soc. Am. A 17, 1773–1784 (2000). [CrossRef]
  27. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 2003), Chap. 11.
  28. E. D. Palik, Handbook of Optical Constants of Solids, 4th ed. (Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited