OSA's Digital Library

Photonics Research

Photonics Research

| A joint OSA/Chinese Laser Press publication

  • Editor: Zhiping (James) Zhou
  • Vol. 2, Iss. 2 — Apr. 1, 2014
  • pp: 71–74

Athermal scheme based on resonance splitting for silicon-on-insulator microring resonators

Qingzhong Deng, Xinbai Li, Zhiping Zhou, and Huaxiang Yi  »View Author Affiliations

Photonics Research, Vol. 2, Issue 2, pp. 71-74 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (619 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel athermal scheme utilizing resonance splitting of a dual-ring structure is proposed. Detailed design and simulation are presented, and a proof of concept structure is optimized to demonstrate an athermal resonator with resonance wavelength variation lower than 5pm/K within 30 K temperature range.

© 2014 Chinese Laser Press

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.4555) Optical devices : Coupled resonators
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Silicon Photonics

Original Manuscript: January 31, 2014
Revised Manuscript: March 12, 2014
Manuscript Accepted: March 12, 2014
Published: March 31, 2014

Qingzhong Deng, Xinbai Li, Zhiping Zhou, and Huaxiang Yi, "Athermal scheme based on resonance splitting for silicon-on-insulator microring resonators," Photon. Res. 2, 71-74 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2007). [CrossRef]
  2. H. Yi, D. S. Citrin, Y. Chen, and Z. Zhou, “Dual-microring-resonator interference sensor,” Appl. Phys. Lett. 95, 191112–191113 (2009). [CrossRef]
  3. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO/QELS), OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.
  4. K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20, 27999–28008 (2012). [CrossRef]
  5. P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Z. Feng, X. Z. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18, 9852–9858 (2010). [CrossRef]
  6. C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CThJ3.
  7. B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21, 26557–26563 (2013). [CrossRef]
  8. W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20, 885–887 (2008). [CrossRef]
  9. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, and G. Morthier, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633 (2009). [CrossRef]
  10. J. Lee, D. Kim, G. Kim, O. Kwon, K. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguide using slot structure,” Opt. Express 16, 1645–1652 (2008). [CrossRef]
  11. J. Lee, D. Kim, H. Ahn, S. Park, and G. Kim, “Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer,” J. Lightwave Technol. 25, 2236–2243 (2007). [CrossRef]
  12. H. Yi, D. S. Citrin, and Z. Zhou, “Highly sensitive athermal optical microring sensor based on intensity detection,” IEEE J. Quantum Electron. 47, 354–358 (2011). [CrossRef]
  13. B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18, 3487–3493 (2010). [CrossRef]
  14. B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett. 37, 2253–2255 (2012). [CrossRef]
  15. J. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12, 90–103 (2004). [CrossRef]
  16. H. Yi, D. S. Citrin, and Z. Zhou, “Coupling-induced high-sensitivity silicon microring intensity-based sensor,” J. Opt. Soc. Am. B 28, 1611–1615 (2011). [CrossRef]
  17. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12, 320–322 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited