OSA's Digital Library

Photonics Research

Photonics Research

| A joint OSA/Chinese Laser Press publication

  • Editor: Zhiping (James) Zhou
  • Vol. 2, Iss. 3 — Jun. 1, 2014
  • pp: A25–A33

Bulk-Si photonics technology for DRAM interface [Invited]

Hyunil Byun, Jinkwon Bok, Kwansik Cho, Keunyeong Cho, Hanmei Choi, Jinyong Choi, Sanghun Choi, Sangdeuk Han, Seokyong Hong, Seokhun Hyun, T. J. Jeong, Ho-Chul Ji, In-Sung Joe, Beomseok Kim, Donghyun Kim, Junghye Kim, Jeong-Kyoum Kim, Kiho Kim, Seong-Gu Kim, Duanhua Kong, Bongjin Kuh, Hyuckjoon Kwon, Beomsuk Lee, Hocheol Lee, Kwanghyun Lee, Shinyoung Lee, Kyoungwon Na, Jeongsik Nam, Amir Nejadmalayeri, Yongsang Park, Sunil Parmar, Junghyung Pyo, Dongjae Shin, Joonghan Shin, Yong-hwack Shin, Sung-Dong Suh, Honggoo Yoon, Yoondong Park, Junghwan Choi, Kyoung-Ho Ha, and Gitae Jeong  »View Author Affiliations


Photonics Research, Vol. 2, Issue 3, pp. A25-A33 (2014)
http://dx.doi.org/10.1364/PRJ.2.000A25


View Full Text Article

Enhanced HTML    Acrobat PDF (2817 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present photonics technology based on a bulk-Si substrate for cost-sensitive dynamic random-access memory (DRAM) optical interface application. We summarize the progress on passive and active photonic devices using a local-crystallized Si waveguide fabricated by solid phase epitaxy or laser-induced epitaxial growth on bulk-Si substrate. The process of integration of a photonic integrated circuit (IC) with an electronic IC is demonstrated using a 65 nm DRAM periphery process on 300 mm wafers to prove the possibility of seamless integration with various complementary metal-oxide-semiconductor devices. Using the bulk-Si photonic devices, we show the feasibility of high-speed multidrop interface: the Mach–Zehnder interferometer modulators and commercial photodetectors are used to demonstrate four-drop link operation at 10Gb/s, and the transceiver chips with photonic die and electronic die work for the DDR3 DRAM interface at 1.6Gb/s under a 14 multidrop configuration.

© 2014 Chinese Laser Press

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(130.3120) Integrated optics : Integrated optics devices

History
Original Manuscript: February 24, 2014
Revised Manuscript: March 14, 2014
Manuscript Accepted: March 22, 2014
Published: April 17, 2014

Citation
Hyunil Byun, Jinkwon Bok, Kwansik Cho, Keunyeong Cho, Hanmei Choi, Jinyong Choi, Sanghun Choi, Sangdeuk Han, Seokyong Hong, Seokhun Hyun, T. J. Jeong, Ho-Chul Ji, In-Sung Joe, Beomseok Kim, Donghyun Kim, Junghye Kim, Jeong-Kyoum Kim, Kiho Kim, Seong-Gu Kim, Duanhua Kong, Bongjin Kuh, Hyuckjoon Kwon, Beomsuk Lee, Hocheol Lee, Kwanghyun Lee, Shinyoung Lee, Kyoungwon Na, Jeongsik Nam, Amir Nejadmalayeri, Yongsang Park, Sunil Parmar, Junghyung Pyo, Dongjae Shin, Joonghan Shin, Yong-hwack Shin, Sung-Dong Suh, Honggoo Yoon, Yoondong Park, Junghwan Choi, Kyoung-Ho Ha, and Gitae Jeong, "Bulk-Si photonics technology for DRAM interface [Invited]," Photon. Res. 2, A25-A33 (2014)
http://www.opticsinfobase.org/prj/abstract.cfm?URI=prj-2-3-A25


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Sohn, T. Na, I. Song, Y. Shim, W. Bae, S. Kang, D. Lee, H. Jung, S. Hyun, H. Jeoung, K.-W. Lee, J.-S. Park, J. Lee, B. Lee, I. Jun, J. Park, J. Park, H. Choi, S. Kim, H. Chung, Y. Choi, D.-H. Jung, B. Kim, J.-H. Choi, S.-J. Jang, C.-W. Kim, J.-B. Lee, and J. S. Choi, “A 1.2  V 30  nm 3.2  Gb/s/pin 4  Gb DDR4 SDRAM with dual-error detection and PVT-tolerant data-fetch scheme,” IEEE J. Solid-State Circuits 48, 168–177 (2013). [CrossRef]
  2. R. Ramakrishnan, “CAP and cloud data management,” Computer 45, 43–49 (2012). [CrossRef]
  3. M. E. Tolentino, J. Turner, and K. W. Cameron, “Memory MISER: improving main memory energy efficiency in servers,” IEEE Trans. Comput. 58, 336–350 (2009). [CrossRef]
  4. Inphi, “Introducing LRDIMM—a new class of memory modules,” http://www.inphi.com/products/whitepapers/Inphi_LRDIMM_whitepaper_Final.pdf .
  5. E. Prete, D. Scheideler, and A. Sanders, “A 100  mW 9.6  Gb/s transceiver in 90  nm CMOS for next-generation memory interfaces,” in IEEE International Solid-State Circuits Conference (ISSCC 2006). Digest of Technical Papers (2006), pp. 253–262.
  6. Z. Gu, P. Gregorius, D. Kehrer, L. Neumann, E. Neuscheler, T. Rickes, H. Ruckerbauer, R. Schledz, M. Streibl, and J. Zielbauer, “Cascading techniques for a high-speed memory interface,” in IEEE International Solid-State Circuits Conference (ISSCC 2007). Digest of Technical Papers (2007), pp. 234–599.
  7. H. Partovi, W. Walthes, L. Ravezzi, P. Lindt, S. Chokkalingam, K. Gopalakrishnan, A. Blum, O. Schumacher, C. Andreotti, M. Bruennert, B. Celli-Urbani, D. Friebe, I. Koren, M. Verbeck, and U. Lange, “Data recovery and retiming for the fully buffered DIMM 4.8  Gb/s serial links,” in IEEE International Solid-State Circuits Conference (ISSCC 2006). Digest of Technical Papers (2006), pp. 1314–1323.
  8. W.-Y. Shin, G.-M. Hong, H. Lee, J.-D. Han, K.-S. Park, D.-H. Lim, S. Kim, D. Shim, J.-H. Chun, D.-K. Jeong, and S. Kim, “4-Slot, 8-drop impedance-matched bidirectional multidrop DQ bus with a 4.8  Gb/s memory controller transceiver,” IEEE Trans Compon, Packag Manuf Technol, Part A 3, 858–869 (2013). [CrossRef]
  9. H. Fredriksson and C. Svensson, “Improvement potential and equalization example for multidrop DRAM memory buses,” IEEE Trans. Adv. Packag. 32, 675–682 (2009). [CrossRef]
  10. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000). [CrossRef]
  11. M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photon. News 24, 32–39 (2013). [CrossRef]
  12. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt Express 15, 660–668 (2007). [CrossRef]
  13. S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464, 80–84 (2010). [CrossRef]
  14. MTI Corporation, http://www.mtixtl.com .
  15. University Wafer, http://www.universitywafer.com .
  16. L. Liao, D. Lim, A. Agarwal, X. Duan, K. Lee, and L. Kimerling, “Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,” J. Electron. Mater. 29, 1380–1386 (2000). [CrossRef]
  17. C. W. Holzwarth, J. S. Orcutt, H. Li, M. A. Popovic, V. Stojanovic, J. L. Hoyt, R. J. Ram, and H. I. Smith, “Localized substrate removal technique enabling strong-confinement microphotonics in bulk Si CMOS processes,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2008), paper CThKK5.
  18. H.-C. Ji, K. H. Ha, K. W. Na, S. G. Kim, I. S. Joe, D. J. Shin, K.-H. Lee, S. D. Suh, J. K. Bok, Y. S. You, Y. W. Hyung, S. S. Kim, Y. D. Park, and C. H. Chung, “Bulk silicon photonic wire for one-chip integrated optical interconnection,” in 7th IEEE International Conference on Group IV Photonics (GFP) (2010), pp. 96–98.
  19. J. S. Custer, A. Polman, and H. M. van Pinxteren, “Erbium in crystal silicon: segregation and trapping during solid phase epitaxy of amorphous silicon,” J. Appl. Phys. 75, 2809–2817 (1994). [CrossRef]
  20. D. J. Shin, K. S. Cho, H. C. Ji, B. S. Lee, S. G. Kim, J. K. Bok, S. H. Choi, Y. H. Shin, J. H. Kim, S. Y. Lee, K. Y. Cho, B. J. Kuh, J. H. Shin, J. S. Lim, J. M. Kim, H. M. Choi, K. H. Ha, Y. D. Park, and C. H. Chung, “Integration of Si photonics into DRAM process,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2013), paper OTu2C.4.
  21. H.-C. Ji, K. H. Ha, I. S. Joe, S. G. Kim, K. W. Na, D. J. Shin, S. D. Suh, Y. D. Park, and C. H. Chung, “Optical interface platform for DRAM integration,” in Optical Fiber Communication Conference and Exposition, and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2011), pp. 1–3.
  22. J. S. Im, H.-J. Kim, and M. O. Thompson, “Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films,” Appl. Phys. Lett. 63, 1969–1971 (1993). [CrossRef]
  23. J. Shin, B. Kuh, J. Lim, B. Kim, E. Lee, D. Shin, K. Cho, B. Lee, K. Ha, H. Choi, G.-H. Choi, H. Kang, and E. Jung, “Epitaxial growth technology for optical interconnect based on bulk-Si platform,” in IEEE 10th International Conference on Group IV Photonics (GFP) (2013), pp. 3–4.
  24. D. J. Shin, K.-H. Lee, H.-C. Ji, K. W. Na, S. G. Kim, J. K. Bok, Y. S. You, S. S. Kim, I. S. Joe, S. D. Suh, J. Pyo, Y. H. Shin, K. H. Ha, Y. D. Park, and C. H. Chung, “Mach–Zehnder silicon modulator on bulk silicon substrate: toward DRAM optical interface,” in 7th IEEE International Conference on Group IV Photonics (GFP) (2010), pp. 210–212.
  25. K. Lee, D. J. Shin, H. Ji, K. W. Na, S. G. Kim, J. K. Bok, Y. S. You, S. S. Kim, I. S. Joe, S. D. Suh, J. H. Pyo, Y. H. Shin, K. H. Ha, Y. D. Park, and C. H. Chung, “10  Gb/s silicon modulator based on bulk-silicon platform for DRAM optical interface,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2011), pp. 1–3.
  26. K. Ha, D. Shin, H. Byun, K. Cho, K. Na, H. Ji, J. Pyo, S. Hong, K. Lee, B. Lee, Y. Shin, J. Kim, S. Kim, I. Joe, S. Suh, S. Choi, S. Han, Y. Park, H. Choi, B. Kuh, K. Kim, J. Choi, S. Park, H. Kim, K. Kim, J. Choi, H. Lee, S. Yang, S. Park, M. Lee, M. Cho, S. Kim, T. Jeong, S. Hyun, C. Cho, J. Kim, H. Yoon, J. Nam, H. Kwon, H. Lee, J. Choi, S. Jang, J. Choi, and C. Chung, “Si-based optical I/O for optical memory interface,” Proc. SPIE 8267, 82670F (2012). [CrossRef]
  27. H.-C. Ji, K. Cho, B. Lee, K. Cho, S. Choi, J. Kim, Y. Shin, S.-G. Kim, S. Lee, H. Byun, S. Parmar, A. Nejadmalayeri, D. Kim, J. Bok, Y. Park, D. Shin, I.-S. Joe, B. Kuh, B. Kim, K. Kim, H. Choi, and K. Ha, are preparing a manuscript to be called “Box-less waveguide Ge PD for bulk-Si based silicon photonic platform,” to be presented at Optical Fiber Communication Conference/National Fiber Optic Engineers Conference.
  28. B. S. Lee, K. S. Cho, Y. H. Shin, J. H. Kim, J. K. Bok, S. G. Kim, D. J. Shin, S. Y. Lee, S. H. Choi, H. C. Ji, K. Y. Cho, H. I. Byun, I. S. Joe, B. J. Kuh, A. Nejadmalayeri, P. Sunil, J. H. Shin, J. S. Lim, B. S. Kim, H. M. Choi, K. H. Ha, G. T. Jeong, G. Y. Jin, and E. S. Jung, “Integration of photonic circuits with electronics on bulk-Si platform,” in IEEE 10th International Conference on Group IV Photonics (GFP) (2013), pp. 1–2.
  29. J. Pyo, D. J. Shin, K. Lee, H. Ji, K. W. Na, K. S. Cho, S. G. Kim, I. S. Joe, S. D. Suh, Y. H. Shin, Y. Choi, S. Y. Hong, H. I. Byun, B. S. Lee, K. H. Ha, Y. D. Park, and C. H. Chung, “10  Gb/s, 1 × 4 optical link for DRAM interconnect,” in 8th IEEE International Conference on Group IV Photonics (GFP) (2011), pp. 368–370.
  30. H. Byun, I. Joe, S. Kim, K. Lee, S. Hong, H. Ji, J. Pyo, K. Cho, S. Kim, S. Suh, Y. Shin, S. Choi, J. Kim, S. Han, B. Lee, K. Na, D. Shin, K. Ha, Y. Park, K. Kim, J. Choi, T. Jeong, S. Hyun, J. Kim, H. Yoon, J. Nam, H. Kwon, H. Lee, J.-H. Choi, J. Choi, and C. Chung, “FPGA-based DDR3 DRAM interface using bulk-Si optical interconnects,” in IEEE 10th International Conference on Group IV Photonics (GFP) (2013), pp. 5–6.
  31. S. Palermo, A. Emami-Neyestanak, and M. Horowitz, “A 90  nm CMOS 16  Gb/s transceiver for optical interconnects,” IEEE J. Solid-State Circuits 43, 1235–1246 (2008). [CrossRef]
  32. R. Forster, “Manchester encoding: opposing definitions resolved,” Eng. Sci. Educ. J. 9, 278–280 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited