OSA's Digital Library

Photonics Research

Photonics Research

| A joint OSA/Chinese Laser Press publication

  • Editor: Zhiping (James) Zhou
  • Vol. 2, Iss. 3 — Jun. 1, 2014
  • pp: A45–A55

Rare earth silicates as gain media for silicon photonics [Invited]

Hideo Isshiki, Fangli Jing, Takuya Sato, Takayuki Nakajima, and Tadamasa Kimura  »View Author Affiliations

Photonics Research, Vol. 2, Issue 3, pp. A45-A55 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1239 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



ErxY2xSiO5 and ErxYbyY2xySiO5 crystalline thin films were investigated to apply to the high-gain media for silicon photonics. In addition to the sol–gel method, the directed self-assembly approach, using layer-by-layer deposition techniques, was also introduced to improve the crystallinity. The relaxation processes in Er ions were discussed to clarify the contribution of the energy transfer and cooperative upconversion. After optimization of the Er content, a Si photonic crystal slot ErxY2xSiO5 waveguide amplifier was fabricated, and a 30dB/cm modal gain was demonstrated. This achievement demonstrates the potential for compact and high optical gain devices on Si chips.

© 2014 Chinese Laser Press

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(230.4480) Optical devices : Optical amplifiers

Original Manuscript: February 19, 2014
Revised Manuscript: May 8, 2014
Manuscript Accepted: May 8, 2014
Published: May 30, 2014

Hideo Isshiki, Fangli Jing, Takuya Sato, Takayuki Nakajima, and Tadamasa Kimura, "Rare earth silicates as gain media for silicon photonics [Invited]," Photon. Res. 2, A45-A55 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2004).
  2. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26, 58–66 (2006). [CrossRef]
  3. D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97, 1166–1185 (2009). [CrossRef]
  4. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14, 12401–12408 (2006). [CrossRef]
  5. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010). [CrossRef]
  6. P. H. Lim, J. Cai, Y. Ishikawa, and K. Wada, “Laterally coupled silicon-germanium modulator for passive waveguide systems,” Opt. Lett. 37, 1496–1498 (2012). [CrossRef]
  7. J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications,” Appl. Phys. Lett. 87, 011110 (2005). [CrossRef]
  8. R. J. Mears, L. Reekie, I. M. Jauncie, and D. N. Pyne, “Low-noise erbium-doped fibre amplifier operating at 1.54  um,” Electron. Lett. 23, 1026 (1987). [CrossRef]
  9. E. Desurvire, J. R. Simpson, and P. C. Becker, “High-gain erbium-doped travelling-wave fibre amplifier,” Opt. Lett. 12, 888–890 (1987). [CrossRef]
  10. H. Isshiki, A. Polman, and T. Kimura, “Fine structure in the Er-related emission spectrum from Er–Si–O matrices at room temperature under carrier mediated excitation,” J. Lumin. 102–103, 819–824 (2003). [CrossRef]
  11. H. Isshiki, M. J. A. de Dood, A. Polman, and T. Kimura, “Self-assembled infrared-luminescent Er–Si–O crystallites on silicon,” Appl. Phys. Lett. 85, 4343 (2004). [CrossRef]
  12. M. Miritello, R. L. Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19, 1582–1588 (2007). [CrossRef]
  13. K. Suh, J. H. Shin, S.-J. Seo, and B.-S. Bae, “Luminescence and cooperative upconversion in nanocrystal aggregates fabricated using Si nanowires,” Appl. Phys. Lett. 92, 121910 (2008). [CrossRef]
  14. K. Suh, M. Lee, J. S. Chang, H. Lee, N. Park, G. Y. Sung, and J. H. Shin, “Cooperative upconversion and optical gain in ion-beam sputter-deposited ErxY2-xSiO5 waveguides,” Opt. Express 18, 7724–7731 (2010). [CrossRef]
  15. X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of waveguide,” J. Appl. Phys. 108, 013506 (2010). [CrossRef]
  16. H. Isshiki and T. Kimura, “Toward small size waveguide amplifiers based on erbium silicate for silicon photonics,” IEICE Trans. Electron. E91-C, 138–144 (2008). [CrossRef]
  17. M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967). [CrossRef]
  18. M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932 (1971). [CrossRef]
  19. N. Krasutsky and H. W. Moos, “Energy transfer between the low-lying energy levels of Pr3+ and Nd3+ in LaCl3,” Phys. Rev. B 8, 1010 (1973). [CrossRef]
  20. E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5, 159–167 (1996). [CrossRef]
  21. G. Tang, C. Liu, Z. Yang, L. Luo, and W. Chen, “Near-infrared emission properties and energy transfer of Tm3+-doped and Tm3+/Dy3+-codoped chalcohalide glasses,” J. Appl. Phys. 104, 113116 (2008). [CrossRef]
  22. T. Nakajima, Y. Tanaka, T. Kimura, and H. Isshiki, “Role of energy migration in nonradiative relaxation processes in ErxY2-xSiO5 crystalline thin films,” Jpn. J. Appl. Phys. 52, 082601 (2013). [CrossRef]
  23. H. Isshiki, M. Oe, T. Samejima, T. Ushiyama, and T. Kimura, “Phase separation growth of Er2SiO5 thin film in Si-rich ErSiO preform,” Phys. E 41, 1055–1058 (2009). [CrossRef]
  24. H. Isshiki, Y. Tanaka, K. Iwatani, T. Nakajima, and T. Kimura, “Highly oriented ErxY2-xSiO5 crystalline thin films fabricated by pulsed laser deposition,” in Proceedings of the 7th IEEE International Conference Group IV Photonics (GFP 2010) (IEEE, 2010), p. 311.
  25. T. Kimura, Y. Tanaka, H. Ueda, and H. Isshiki, “Formation of highly oriented layer-structured Er2SiO5 films by pulsed laser deposition,” Phys. E 41, 1063–1066 (2009). [CrossRef]
  26. T. Nakajima, T. Shinagawa, T. Sugawara, Y. Jiang, T. Kimura, and H. Isshiki, “Suppression of scattering loss in Erbium-Yttrium Silicate crystalline waveguide fabricated by radical-assisted sputtering,” in Proceedings of the 9th IEEE International Conference Group IV Photonics (GFP 2012) (IEEE, 2012), pp. 243–245.
  27. Q. Song, B. Wu, B. Xie, F. Huang, M. Li, H. Wang, Y. Jiang, and Y. Song, “Erratum: ‘Resputtering of zinc oxide films prepared by radical assisted sputtering’,” J. Appl. Phys. 105, 044509 (2009). [CrossRef]
  28. T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437, 55 (1948). [CrossRef]
  29. B.-C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, “Cooperative upconversion and energy transfer of new high Er3+- and Yb3+–Er3+-doped phosphate glasses,” J. Opt. Soc. Am. B 17, 833–839 (2000). [CrossRef]
  30. X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, “Extraordinary infrared photoluminescence efficiency of films on substrates,” Appl. Phys. Lett. 98, 071903 (2011). [CrossRef]
  31. M. Miritello, P. Cardile, R. L. Savio, and F. Priolo, “Energy transfer and enhanced 1.54 μm emission in Erbium-Ytterbium disilicate thin films,” Opt. Express 19, 20761–20772 (2011). [CrossRef]
  32. H. Omi, Y. Abe, M. Anagnosti, and T. Tawara, “Light emission from thulium silicates and oxides for optical amplifiers on silicon in the extended optical communications band,” AIP Adv. 3, 042107 (2013). [CrossRef]
  33. H. C. Berg, Random Walks in Biology (Princeton University, 1993), Chap. 1.
  34. M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, A. J. Bruce, G. Nykolak, and J. Shmulovich, “Uniform upconversion in high-concentration Er3+-doped soda lime silicate and aluminosilicate glasses,” Opt. Lett. 22, 772–774 (1997). [CrossRef]
  35. P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers,” J. Appl. Phys. 93, 5008 (2003). [CrossRef]
  36. C. P. Michael, H. B. Yuen, V. A. Sabnis, T. J. Johnson, R. Sewell, R. Smith, A. Jamora, A. Clark, S. Semans, P. B. Atanackovic, and O. Painter, “Growth, processing, and optical properties of epitaxial Er2O3 on silicon,” Opt. Express 16, 19649–19666 (2008). [CrossRef]
  37. L. Gomes, A. Felipe, H. Librantz, F. H. Jagosich, W. A. L. Alves Izilda, M. Ranieri, and S. L. Baldochi, “Energy transfer rates and population inversion of I411/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal,” J. Appl. Phys. 106, 103508 (2009). [CrossRef]
  38. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007). [CrossRef]
  39. T. Sato, T. Nakajima, T. Kimura, and H. Isshiki, “Observation of 30  dB/cm gain in Si photonic crystal slot ErxY2-xSiO5 waveguide,” in Proceedings of the 8th IEEE International Conference Group IV Photonics (GFP 2011) (IEEE, 2011), p. 6053828.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited