OSA's Digital Library

Spotlight on Optics

Spotlight on Optics


  • May 2014

Optics InfoBase > Spotlight on Optics > Compression of ultrashort laser pulses via gated multiphoton intrapulse interference phase scans

Compression of ultrashort laser pulses via gated multiphoton intrapulse interference phase scans

Published in JOSA B, Vol. 31 Issue 5, pp.1118-1125 (2014)
by Alberto Comin, Richard Ciesielski, Giovanni Piredda, Kevin Donkers, and Achim Hartschuh

Source article Abstract | Full Text: XHTML | Full Text: PDF

Spotlight summary: A better concentration of light in 4 dimensions (time and 3-dimensional space) has always been one of the most interesting topics in optics, since it is a crucial factor for improving the spatial and temporal resolution of time-resolved optical microscopy and micromachining. For instance, in the case of time-resolved microscopy, if the light is not well-concentrated in time and space, we are not able to clearly capture ultrafast motions of very small features, just as we cannot take a clear snapshot of moving objects in daily life when the exposure time and lens resolution of the camera are not sufficiently short and high, respectively. Moreover, for micromachining, heat energy induced from the absorbed light also cannot be deposited in a small volume, and this will significantly deteriorate the efficiency and spatial resolution of micromachining.

To reach a greater concentration of light in space, using a higher numerical aperture (NA) objective lens is essential; however, for ultrashort pulses with a broadband spectrum, a higher NA objective lens will tremendously increase the pulse duration of light by introducing phase distortions originated from the dispersion of light in glass. Therefore, for a better correction of the phase distortions to obtain shorter pulses at a certain region, it is necessary to evaluate the phase distortions induced by the objective lens precisely. Currently, one of the most popular techniques to characterize the phase distortions is the multiphoton intrapulse interference phase scan (MIIPS), developed by the group of Dantus in 2002. The basic idea of MIIPS is to find a suitable phase mask that makes the group delay dispersion (GDD) zero, and to use this mask to retrieve the spectral phase distortions. Unfortunately, the GDD only covers the second order dispersion, and therefore the accuracy of this characterization is fundamentally limited to the second order correction.

In this paper, the authors demonstrate improved accuracy in spectral phase characterization without any increase in time for measurement by including the influences from higher order contributions in an ingenious way, in what they call Gated-MIIPS. This technique simply employs amplitude modulation to gate the spectrum around a specific frequency. With this implementation, the authors effectively improve the validity of second order and even higher order contributions of the phase, and further demonstrate that Gated-MIIPS successfully characterizes the phase distortions of femtosecond pulses focused by a very high NA objective lens. Therefore, Gated-MIIPS can be used to help concentrating light efficiently in 4 dimensions, potentially leading to improvements in the resolution and precision of time-resolved microscopy and micromachining.

--Taek Yong Hwang

Technical Division: Light–Matter Interactions
ToC Category: Ultrafast Optics
OCIS Codes: (190.7110) Nonlinear optics : Ultrafast nonlinear optics
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(320.5540) Ultrafast optics : Pulse shaping

Posted on May 07, 2014

Add Comment
You must log in to add comments.

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Previous Spotlights