OSA's Digital Library

Spotlight on Optics

Spotlight on Optics


  • March 2014

Optics InfoBase > Spotlight on Optics > Supercontinuum generation in an on-chip silica waveguide

Supercontinuum generation in an on-chip silica waveguide

Published in Optics Letters, Vol. 39 Issue 4, pp.1046-1048 (2014)
by Dong Yoon Oh, David Sell, Hansuek Lee, Ki Youl Yang, Scott A. Diddams, and Kerry J. Vahala

Source article Abstract | Full Text: XHTML | Full Text: PDF

Spotlight summary: The generation of a continuous spectrum (often spanning several hundreds of nanometers), resulting from the nonlinear propagation of optical radiation in a medium, is commonly called supercontinuum generation. Research on supercontinuum generation has been active since the early 1970’s, when the effect was first observed, and several impressive results have been achieved since then, exploiting a variety of nonlinear materials. It is not only the physics of supercontinuum generation that has attracted the interest of researchers, but also its important applications benefitting a range of very diverse fields; for example, the availability of supercontinuum spectra spanning one octave has allowed the use of frequency combs as calibrated rulers for high-precision frequency measurements, whereas smooth, broadband spectra are required in optical coherence tomography systems of increased spatial resolution.

The generation of a supercontinuum generally involves several nonlinear processes, such as self- and cross-phase modulation, four-wave mixing, modulation instability, dispersive wave generation and Raman scattering, which act together as the wave propagates along the medium. However, in order to allow these processes to efficiently build up and give rise to a broadband supercontinuum, it is not just the nonlinearity of the medium that is important. Its chromatic dispersion characteristics play an equally important role, as does also the propagation loss across the entire spectral range of interest. Photonic crystal optical fibers have proved a rather useful technology in this respect, since their flexibly engineered waveguide properties have allowed for both precise manipulation of the waveguide dispersion and enhanced nonlinear behavior (facilitated by the large index contrast between the large core and the air-filled cladding). However, several applications would benefit from compact supercontinuum sources, and this has prompted researchers to investigate materials with extreme values of nonlinearity which could be used to facilitate nonlinear generation on a chip. Materials, such as silicon and chalcogenide, have been obvious candidates for this purpose, mainly because of their excellent nonlinear properties. Despite the impressive results achieved to date, though, widespread adoption of such highly nonlinear materials has been hampered by the typically relatively high (both linear and nonlinear, at the wavelengths of interest for most applications) optical losses.

Silica on the other hand, is a material with relatively low nonlinearity – this is one of the features that have made silica optical fibers so attractive for long-distance communications. However, when seen as a nonlinear material, the low nonlinearity of silica can be counterbalanced by its extremely low losses, which allow substantially strong nonlinear effects to be built up over long distances. This has been applied extensively in nonlinear fiber optics, where silica-based nonlinear devices are implemented in relatively long lengths of optical fiber. The work by Oh et al. has combined the advantages of silica as a low-loss material with the compactness of a waveguide chip design that has allowed 3.5 m of waveguide to be implemented in a spiral design occupying an area of just a few square centimeters. The work reports the generation of frequencies extending over more than 160 THz in the spectrum, while detailed numerical modeling of the waveguide optical properties shows that it is possible to predict accurately its nonlinear behavior. The work is significant in that it shows the potential of silica waveguides as compact and efficient nonlinear devices, whereas improvements in the engineering of the waveguide dispersion characteristics can be expected to yield devices exhibiting even more impressive performance.

--Periklis Petropoulos

Technical Division: Light–Matter Interactions
ToC Category: Ultrafast Optics
OCIS Codes: (190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(320.6629) Ultrafast optics : Supercontinuum generation

Posted on March 07, 2014

Add Comment
You must log in to add comments.

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Previous Spotlights