OSA's Digital Library

Spotlight on Optics

Spotlight on Optics


  • September 2012

Optics InfoBase > Spotlight on Optics > Multicolor cavity metrology

Multicolor cavity metrology

Published in JOSA A, Vol. 29 Issue 10, pp.2092-2103 (2012)
by Kiwamu Izumi, Koji Arai, Bryan Barr, Joseph Betzwieser, Aidan Brooks, Katrin Dahl, Suresh Doravari, Jennifer C. Driggers, W. Zach Korth, Haixing Miao, Jameson Rollins, Stephen Vass, David Yeaton-Massey, and Rana X. Adhikari

Source article Abstract | Full Text: XHTML | Full Text: PDF

Spotlight summary: The direct detection of gravitational waves with kilometer-scale laser interferometers has become a monumental effort involving many hundreds of researchers worldwide. When Einstein first predicted the existence of gravitational waves, he concluded that they interacted so weakly with matter that it was unlikely that we would ever be able to detect them. And yet advances in precision measurement technology have brought this possibility tantalizingly close.

Over the last few decades, the quest to build detectors sensitive enough to measure gravitational waves from astrophysical sources spurred development in quantum optics, and sparked research in macroscopic quantum measurement. Advanced detectors are designed to improve the current 10-19 m/√Hz displacement noise sensitivity by an order of magnitude. In terms of gravitational wave strain, Advanced LIGO will approach 10-24/√Hz. This incredible value is equivalent to measuring the distance between the Sun and Neptune with subatomic precision.

As the researchers in this field look to the future, it is clear that another technological breakthrough will be necessary to continue to improve detector sensitivity, making possible the regular detection the gravitational waves emitted by some of the universe’s most elusive occupants. The experiment described in this JOSA-A paper is at the leading edge of a new approach being explored in labs around the world; employing optical systems designed to resonate multiple wavelengths of light which offer previously underutilized handles on precision measurement.

In this work the authors demonstrate application of multiple wavelength lasers to explore the properties of the cavity for one wavelength, while controlling the cavity with the other. The most immediate application of this technique, and the target of this paper, is to allow for swift and reliable control of complex resonant optical interferometers, the lack of which has proved a stumbling block for previous generations of gravitational wave detectors. Their detailed analysis of the experimental limits of this technique not only satisfies that primary goal, it also paves the way for applying multi-color metrology to future gravitational wave detectors, as well as a broad array of challenges in precision measurement.

--Matthew Evans

Technical Division: Optoelectronics
ToC Category: Lasers and Laser Optics
OCIS Codes: (120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(350.1270) Other areas of optics : Astronomy and astrophysics
(140.3515) Lasers and laser optics : Lasers, frequency doubled
(310.6805) Thin films : Theory and design

Posted on September 18, 2012

Add Comment
You must log in to add comments.

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Previous Spotlights