OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 5 — May. 5, 2006

Beam attenuation coefficient retrieval by inversion of airborne lidar-induced chromophoric dissolved organic matter fluorescence. I. Theory

Frank E. Hoge  »View Author Affiliations


Applied Optics, Vol. 45, Issue 10, pp. 2344-2351 (2006)
http://dx.doi.org/10.1364/AO.45.002344


View Full Text Article

Enhanced HTML    Acrobat PDF (97 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is shown that the oceanic beam attenuation coefficient can be retrieved from airborne laser-induced and depth-resolved chromophoric dissolved organic matter (CDOM) fluorescence. The radiative transfer equation (RTE) retrieval methodology does not require a laser beam spread function model since two CDOM fluorescence bands are used in conjunction with a beam attenuation spectral model, is self-normalizing since the CDOM absorption coefficient and laser beam irradiance are common to both fluorescence observational channels, and is enabled by the known isotropic phase function for CDOM fluorescence. Although this RTE analytical inversion theory is exact, the retrieval uncertainty is reduced by configuring the proposed lidar in the multiple-field-of-view beam attenuation mode to significantly diminish observation of multiple scattering. The theory can be applied over wide regions of the ocean's continental margins, estuaries, lakes, and rivers that are known to have sufficient CDOM.

© 2006 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.3420) Remote sensing and sensors : Laser sensors
(280.3640) Remote sensing and sensors : Lidar
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:
Remote Sensing

History
Original Manuscript: April 8, 2005
Manuscript Accepted: June 10, 2005

Virtual Issues
Vol. 1, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Frank E. Hoge, "Beam attenuation coefficient retrieval by inversion of airborne lidar-induced chromophoric dissolved organic matter fluorescence. I. Theory," Appl. Opt. 45, 2344-2351 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-45-10-2344


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. D. Mobley, Light and Water, Radiative Transfer in Natural Waters (Academic, 1994), Chap. 5. The errata can be found at ftp.sequoiasci.com within the file /pub/outgoing/LightandWaterErrata.pdf. Note: at the time of publication, Mobley's Light and Water is now available on CD, with the errors corrected. The CD is available from Mobley, or the contents of the CD can be downloaded from http://www.curtismobley.com/curts_work.htm or from http://www.curtismobley.com/LightandWater.zip.
  2. J. K. B. Bishop, "Transmissometer measurement of POC," Deep-Sea Res. I 46, 353-369 (1999). [CrossRef]
  3. J. K. B. Bishop, S. E. Calvert, and M. Y. S. Moon, "Spatial variability of POC in the northeast Subarctic Pacific," Deep-Sea Res. II 46, 2699-2733 (1999). [CrossRef]
  4. F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, and J. K. Yungel, "Satellite retrieval of inherent optical properties by inversion of an oceanic radiance model: a preliminary algorithm," Appl. Opt. 38, 495-504 (1999). [CrossRef]
  5. F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, and J. K. Yungel, "Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status," Appl. Opt. 38, 7431-7441 (1999). [CrossRef]
  6. F. E. Hoge, A. Vodacek, R. N. Swift, J. K. Yungel, and N. V. Blough, "Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements," Appl. Opt. 34, 7032-7038 (1995). [CrossRef] [PubMed]
  7. F. E. Hoge, M. E. Williams, R. N. Swift, J. K. Yungel, and A. Vodacek, "Satellite retrieval of the absorption coefficient of chromophoric dissolved organic matter in continental margins," J. Geophys. Res. 100, 24847-24854 (1995). [CrossRef]
  8. F. E. Hoge, R. E. Berry, and R. N. Swift, "Active-passive airborne ocean color measurement. 1: Instrumentation," Appl. Opt. 25, 39-47 (1986). [CrossRef] [PubMed]
  9. F. E. Hoge, R. N. Swift, and J. K. Yungel, "Active-passive airborne ocean color measurement. 2: Applications," Appl. Opt. 25, 48-57 (1986). [CrossRef] [PubMed]
  10. F. E. Hoge, A. Vodacek, and N. V. Blough, "Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements," Limnol. Oceanogr. 38, 1394-1402 (1993). [CrossRef]
  11. R. J. Exton, W. M. Houghton, W. Esaias, R. C. Harriss, F. H. Farmer, and H. H. White, "Laboratory analysis of techniques for remote sensing of estuarine parameters using laser excitation," Appl. Opt. 22, 54-64 (1983). [CrossRef] [PubMed]
  12. F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, and J. K. Yungel, "Inherent optical properties imagery of the western North Atlantic Ocean: horizontal spatial variability of the upper mixed layer," J. Geophys. Res. 106, 31129-31140 (2001). [CrossRef]
  13. F. E. Hoge is preparing a manuscript with the title "Oceanic beam attenuation coefficient retrieval by radiative transfer equation inversion of airborne water Raman backscattering. 1: Theory."
  14. C. D. Clark, J. Jimenez-Morais, G. Jones, E. Zanardi-Lamardo, C. A. Moore, and R. G. Zika, "A time-resolved fluorescence study of dissolved organic matter in a riverine to marine transition zone," Mar. Chem. 78, 121-135 (2002). [CrossRef]
  15. A. Bricaud, A. Morel, and L. Prieur, "Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains," Limnol. Oceanogr. 26, 43-53 (1981). [CrossRef]
  16. F. E. Hoge, R. N. Swift, J. K. Yungel, and A. Vodacek, "Fluorescence of dissolved organic matter: a comparison of North Pacific and North Atlantic Oceans during April 1991," J. Geophys. Res. 98, 22779-22787 (1993). [CrossRef]
  17. C. W. Wright, F. E. Hoge, R. N. Swift, J. K. Yungel, and C. R. Schirtzinger, "Next-generation NASA airborne oceanographic lidar system," Appl. Opt. 40, 336-342 (2001). [CrossRef]
  18. F. E. Hoge and R. N. Swift, "Airborne detection of oceanic turbidity cell structure using depth-resolved laser-induced water Raman backscatter," Appl. Opt. 22, 3778-3786 (1983). [CrossRef] [PubMed]
  19. F. E. Hoge and R. N. Swift, "Experimental feasibility of the airborne measurement of absolute oil fluorescence spectral conversion efficiency," Appl. Opt. 22, 37-47 (1983). [CrossRef] [PubMed]
  20. H. R. Gordon, "Interpretation of airborne oceanic lidar: effects of multiple scattering," Appl. Opt 21, 2996-3001 (1982). [CrossRef] [PubMed]
  21. G. Roy, L. R. Bissonnette, C. Bastille, and G. Vallee, "Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals: theory and experimental validation," Appl. Opt. 38, 5202-5211 (1999). [CrossRef]
  22. L. Bissonnette, G. Roy, L. Poutier, S. G. Cober, and G. A. Isaac, "Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements," Appl. Opt. 41, 6307-6324 (2002). [CrossRef] [PubMed]
  23. L. R. Bisonnette and D. L. Hunt, "Multiple scattering lidar," Appl. Opt. 29, 5045-5046 (1990). [CrossRef]
  24. D. L. Hutt, L. R. Bissonnette, and L. Durand, "Multiple field of view lidar returns from atmospheric aerosols," Appl. Opt. 33, 2338-2348 (1994). [CrossRef] [PubMed]
  25. F. E. Hoge, "Validation of satellite-retrieved oceanic inherent optical properties: proposed two-color elastic backscatter lidar and retrieval theory," Appl. Opt. 42, 7191-7196 (2003). [CrossRef]
  26. K. J. Voss, "A spectral model of the beam attenuation coefficient in the ocean and coastal areas," Limnol. Oceanogr. 37, 501-509 (1992). [CrossRef]
  27. A. H. Bernard, W. S. Pegau, and J. R. V. Zaneveld, "Global relationships of the inherent optical properties of the oceans," J. Geophys. Res 103, 24955-24968 (1998). [CrossRef]
  28. H. R. Gordon, "Contribution of Raman scattering to water-leaving radiance: a reexamination," Appl. Opt. 38, 3166-3174 (1999). [CrossRef]
  29. Y. Ge, H. R. Gordon, and K. J. Voss, "Simulation of inelastic-scattering contributions to the irradiance field in the ocean: variation in Fraunhofer line depths," Appl. Opt. 32, 4028-4036 (1993). [PubMed]
  30. G. C. Boynton and H. R. Gordon, "Irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: Raman-scattering effects," Appl. Opt. 39, 3012-3022 (2000). [CrossRef]
  31. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipies in Fortran, 2nd ed. (Cambridge U. Press, 1992).
  32. A. V. Malinka and E. P. Zege, "Analytical modeling of Raman lidar return, including multiple scattering," Appl. Opt. 42, 1075-1081 (2003). [CrossRef] [PubMed]
  33. I. Katzev, E. Zege, A. Prikhach, and I. Polansky, "Efficient technique to determine backscattered light power for various atmospheric and ocean soundings and imaging systems," J. Opt. Soc. Am. A 14, 1338-1346 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited