OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 6 — Jun. 13, 2006

Task-based imaging of colon cancer in the ApcMin∕+ mouse model

James B. McNally, Nathaniel D. Kirkpatrick, Lida P. Hariri, Alexandre R. Tumlinson, David G. Besselsen, Eugene W. Gerner, Urs Utzinger, and Jennifer K. Barton  »View Author Affiliations


Applied Optics, Vol. 45, Issue 13, pp. 3049-3062 (2006)
http://dx.doi.org/10.1364/AO.45.003049


View Full Text Article

Enhanced HTML    Acrobat PDF (2367 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical coherence tomography (OCT), laser-induced fluorescence (LIF), and laser-scanning confocal microscopy (LSCM) were used for the task of multimodal study of healthy and adenomatous mouse colon. The results from each modality were compared with histology, which served as the gold standard. The A p c M i n / + genetic mouse model of colon cancer was compared with wild-type mice. In addition, a special diet was used for the task of studying the origins of a 680   nm autofluorescent signal that was previously observed in colon. The study found close agreement among each of the modalities and with histology. All four modalities were capable of identifying diseased tissue accurately. The OCT and LSCM images provided complementary structural information about the tissue, while the autofluorescence signal measured by LIF and LSCM provided biochemical information. OCT and LIF were performed in vivo and nondestructively, while the LSCM and histology required extraction of the tissue. The magnitude of the 680   nm signal correlates with chlorophyll content in the mouse diet, suggesting that the autofluorescent compound is a dietary metabolite.

© 2006 Optical Society of America

OCIS Codes
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.2680) Medical optics and biotechnology : Gastrointestinal
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Application

History
Original Manuscript: May 16, 2005
Revised Manuscript: December 4, 2005
Manuscript Accepted: December 9, 2005

Virtual Issues
Vol. 1, Iss. 6 Virtual Journal for Biomedical Optics

Citation
James B. McNally, Nathaniel D. Kirkpatrick, Lida P. Hariri, Alexandre R. Tumlinson, David G. Besselsen, Eugene W. Gerner, Urs Utzinger, and Jennifer K. Barton, "Task-based imaging of colon cancer in the ApcMin/+ mouse model," Appl. Opt. 45, 3049-3062 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-45-13-3049


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. American Cancer Society, "Cancer Facts and Figures 2004" (American Cancer Society, 2004), http://www.cancer.org/downloads/STT/CAFFlowbarfinalPWSecured.pdf.
  2. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, "Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography," Opt. Lett. 21, 543-545 (1996). [CrossRef] [PubMed]
  3. B. E. Bouma and G. J. Tearney, "Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography," Opt. Lett. 24, 531-533 (1999). [CrossRef]
  4. P. R. Herz, Y. Chen, A. D. Aguirre, J. G. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, "Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography," Opt. Express 12, 3532-3542 (2004). [CrossRef] [PubMed]
  5. J. M. Poneros, S. Brand, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, "Diagnosis of specialized intestinal metaplasia by optical coherence tomography," Gastroenterology 120, 7-12 (2001). [CrossRef] [PubMed]
  6. S. Jäckle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schröder, and N. Soehendra, "In vivo endoscopic optical coherence tomography of the human gastrointestinal tract—toward optical biopsy," Endoscopy 32, 743-749 (2000). [CrossRef] [PubMed]
  7. L. P. Hariri, A. R. Tumlinson, N. H. Wade, D. G. Besselsen, U. Utzinger, E. W. Gerner, and J. K. Barton, "Endoscopic optical coherence tomography and laser induced fluorescence spectroscopy in murine colon cancer model," Lasers Surg. Med. (to be published).
  8. R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, and M. S. Feld, "Spectroscopic diagnosis of colonic dysplasia," Photochem. Photobiol. 53, 777-786 (1991). [PubMed]
  9. R. M. Cothren, R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, M. Doxtader, R. Blackman, T. B. Ivanc, G. B. Hayes, M. S. Feld, and R. E. Petras, "Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy," Gastrointest. Endosc. 36, 105-111 (1990). [CrossRef] [PubMed]
  10. S. Fu, C. T. Chia, C. L. Tang, C. H. Diong, and C. Seow, "Changes in in-vivo autofluorescence spectra at different periods in rat colorectal tumor progression," in Diagnostic Optical Spectroscopy in Biomedicine, T. G. Papazoglou and G. A. Wagnières, eds., Proc. SPIE 4432, 118-123 (2001). [CrossRef]
  11. H. W. Wang, J. Willis, M. I. F. Canto, M. V. Sivak, and J. A. Izatt, "Quantitative laser scanning confocal autofluorescence microscopy of normal, premalignant, and malignant colonic tissues," IEEE Trans. Bio-Med. Eng. 46, 1246-1252 (1999). [CrossRef]
  12. G. S. Fiarman, M. H. Nathanson, A. B. West, L. I. Deckelbaum, L. Kelly, and C. R. Kapadia, "Differences in laser-induced autofluorescence between adenomatous and hyperplastic polyps and normal colonic mucosa by confocal microscopy," Dig. Dis. Sci. 40, 1261-1268 (1995). [CrossRef] [PubMed]
  13. J. Chu, S. Chu, and M. H. Montrose, "Apical Na+/H+ exchange near the base of mouse colonic crypts," Am. J. Physiol. 283, C358-C372 (2002).
  14. K. Kataoka, E. Suzaki, and K. Komura, "The Golgi apparatus of goblet cells in the mouse descending colon: three-dimensional visualization using a confocal laser scanning microscope," Histochem. Cell Biol. 116, 329-335 (2001). [CrossRef] [PubMed]
  15. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, "Endoscope-compatible confocal microscope using a gradient index-lens system," Opt. Commun. 188, 267-273 (2001). [CrossRef]
  16. A. R. Rouse, A. Kano, J. A. Udovich, S. M. Kroto, and A. F. Gmitro, "Design and demonstration of a miniature catheter for a confocal microendoscope," Appl. Opt. 43, 5763-5771 (2004). [CrossRef] [PubMed]
  17. W. J. McLaren, P. Anikijenko, S. G. Thomas, P. M. Delaney, and R. G. King, "In vivo detection of morphological and microvasculature changes of the colon in association with colitis using fiberoptic confocal imaging," Dig. Dis. Sci. 47, 2424-2433 (2002). [CrossRef] [PubMed]
  18. R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, "Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo, "Gastroenterology 127, 706-713 (2004). [CrossRef] [PubMed]
  19. L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, C. Luongo, K. A. Gould, and W. F. Dove, "Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene," Science 256, 668-670 (1992). [CrossRef] [PubMed]
  20. G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, and M. S. Feld, "Morphological model of human colon tissue fluorescence," IEEE Trans. Bio-Med. Eng. 43, 113-122 (1996). [CrossRef]
  21. Z. Huang, T. Chia, S. M. Krishnan, and C. Seow, "Study of laser autofluorescence of human colon tissues," in Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society New York (IEEE, 1998), pp. 2963-2966. [PubMed]
  22. K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, "Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential," Lasers Surg. Med. 12, 63-78 (1992). [CrossRef] [PubMed]
  23. C. Sun, E. Duzman, J. Mellot, L.-H. Liaw, and M. W. Berns, "Spectroscopic, morphologic, and cytotoxic studies on major fractions of hematoporphyrin derivative and photofrin II," Lasers Surg. Med. 7, 171-179 (1987). [CrossRef] [PubMed]
  24. R. S. DaCosta, H. Andersson, and B. C. Wilson, "Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy," Photochem. Photobiol. 78, 384-392 (2003), http://eemdb.uhnres.utoronto.ca/cgi-bin/WebObjects/WebFluor. [CrossRef] [PubMed]
  25. R. V. Kuranov, V. V. Sapozhnikova, N. M. Shakhova, V. M. Gelikonov, E. V. Zagainova, and S. A. Petrova, "Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes," Quantum Electron. 32, 993-998 (2002). [CrossRef]
  26. R. J. McNichols, A. Gowda, B. A. Bell, R. M. Johnigan, K. H. Calhoun, and M. Motamedi, "Development of an endoscopic fluorescence image guided OCT probe for oral cancer detection," in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems III, T. Vo-Dinh, W. S. Grundfest, and D. A. Benaron, eds., Proc. SPIE 4254, 23-30 (2001). [CrossRef]
  27. S. Neerken, G. W. Lucassen, M. A. Bisschop, E. Lenderink, and A. M. Nuijs, "Characterization of age-related effects in human skin: a comparative study that applies confocal laser scanning microscopy and optical coherence tomography," J. Bio-Med. Opt. 9, 274-281 (2004). [CrossRef]
  28. A. R. Tumlinson, L. P. Hariri, U. Utzinger, and J. K. Barton, "Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement," Appl. Opt. 43, 113-121 (2004). [CrossRef] [PubMed]
  29. A. R. Tumlinson, J. McNally, A. Unterhuber, B. Hermann, H. Sattmann, W. Drexler, and J. K. Barton, "Endoscopic ultrahigh-resolution OCT for in vivo imaging colon disease model mice," in Advanced Biomedical and Clinical Diagnostic Systems III, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, and G. E. Cohn, eds., Proc. SPIE 5692, 307-315 (2005). [CrossRef]
  30. L. Ma and D. Dolphin, "The metabolites of dietary chlorophylls," Phytochem. 50, 195-202 (1999). [CrossRef]
  31. K. D. Ashby, J. Wen, P. Chowdhury, T. A. Casey, M. A. Rasmussen, and J. W. Petrich, "Fluorescence of dietary porphyrins as a basis for real-time detection of fecal contamination on meat," J. Agric. Food Chem. 51, 3502-3507 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited