Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Combined Henyey–Greenstein and Rayleigh phase function

Not Accessible

Your library or personal account may give you access

Abstract

The phase function is an important parameter that affects the distribution of scattered radiation. In Rayleigh scattering, a scatterer is approximated by a dipole, and its phase function is analytically related to the scattering angle. For the Henyey–Greenstein (HG) approximation, the phase function preserves only the correct asymmetry factor (i.e., the first moment), which is essentially important for anisotropic scattering. When the HG function is applied to small particles, it produces a significant error in radiance. In addition, the HG function is applied only for an intensity radiative transfer. We develop a combined HG and Rayleigh (HG–Rayleigh) phase function. The HG phase function plays the role of modulator extending the application of the Rayleigh phase function for small asymmetry scattering. The HG–Rayleigh phase function guarantees the correct asymmetry factor and is valid for a polarization radiative transfer. It approaches the Rayleigh phase function for small particles. Thus the HG–Rayleigh phase function has wider applications for both intensity and polarimetric radiative transfers. For microwave radiative transfer modeling in this study, the largest errors in the brightness temperature calculations for weak asymmetry scattering are generally below 0.02 K by using the HG–Rayleigh phase function. The errors can be much larger, in the 1–3 K range, if the Rayleigh and HG functions are applied separately.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Calculation of the reflection function of an optically thick scattering layer for a Henyey–Greenstein phase function

Irina N. Melnikova, Zhanna M. Dlugach, Teruyuki Nakajima, and Kazuaki Kawamoto
Appl. Opt. 39(24) 4195-4204 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved